

What is Big Data?

Saptarshi Pyne Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Jodhpur, Rajasthan, India 342030

> CSL4030 Data Engineering Lectures 2 and 3 August 4th and 7th, 2023

What we discussed in the last class

- Who are Data Engineers?
- What is the difference between a Data Scientist and a Data Engineer?

Development of the World Wide Web

Web (1994)

Static HTML pages

Web 2.0 (2004)

- No need for HTML programming
- Users can upload content on social media

Web 3.0

- You guys will build
- Decentralized wealth: Public blockchains, Digital currencies
- Synthetic General Intelligence that "understands" human contents

Development of the World Wide Web

Web (1994)

Static HTML pages

Web 2.0 (2004): Advent of Big Data

- No need for HTML programming
- Users can upload content on social media

Web 3.0

- You guys will build
- Decentralized wealth: Public blockchains, Digital currencies
- Synthetic General Intelligence that "understands" human contents

Web 2.0 and the Big Data Revolution: The Problem

- Feb, 2004: Mark Zuckerberg and colleagues founded Facebook.
- Feb, 2005: Jawed Karim and colleagues founded YouTube.
- Users started uploading large volumes of content on social media and other online services.
- Google and Yahoo realized that they can not economically manage the flow of such massive amounts of data with the traditional data management technologies.

Web 2.0 and the Big Data Revolution: A solution

- In 2004, Google started experimenting with a novel Distributed Computing paradigm which they called MapReduce.
- In 2008, Jeffrey Dean and Sanjay Ghemawat of Google published the MapReduce paper in Communications of the ACM.
 - MapReduce automatically identifies parallelizable tasks/jobs
 - Distributes them to a large cluster of computing nodes for parallel processing
 - Manages inter-node communication to make efficient use of their processing power, network bandwidth, and secondary storage
 - Also, handles node failures. For example, if a node gets disconnected, MapReduce detects it and assigns its job to an available node.
 - Paper Link: <u>https://dl.acm.org/doi/pdf/10.1145/1327452.1327492</u>

Web 2.0 and the Big Data Revolution: A solution (contd.)

- In 2008, Doug Cutting and colleagues at Yahoo! developed a generalpurpose implementation of the MapReduce paradigm which was named after a toy elephant named Hadoop. They shared Hadoop with the Apache Software Foundation, a community of open-source developers.
- In 2011, the Apache Software Foundation publicly released Apache Hadoop 1.0, an open source implementation of Hadoop.

Web 2.0 and the Big Data Revolution: A solution (contd.)

- In 2008, Doug Cutting and colleagues at Yahoo! developed a generalpurpose implementation of the MapReduce paradigm which was named after a toy elephant named Hadoop. They shared Hadoop with the Apache Software Foundation, a community of open-source developers.
- In 2011, the Apache Software Foundation publicly released Apache Hadoop 1.0, an open source implementation of Hadoop.
- In 2014, they released Apache Spark, specialized for streaming apps. It processes streaming data in main memory and avoids access to slower secondary storage.

Web 2.0 and the Big Data Revolution: A solution (contd.)

- In 2008, Doug Cutting and colleagues at Yahoo! developed a generalpurpose implementation of the MapReduce paradigm which was named after a toy elephant named Hadoop. They shared Hadoop with the Apache Software Foundation, a community of open-source developers.
- In 2011, the Apache Software Foundation publicly released Apache Hadoop 1.0, an open source implementation of Hadoop.
- In 2014, they released Apache Spark, specialized for streaming apps. It processes streaming data in main memory and avoids access to slower secondary storage.

What is Big Data made up of?

- Structured Data
- Unstructured Data
- Semi-structured Data: Not a widely recognized term

Structured Data

Data that follows a predefined **schema**. Example: The student database of this course.

#	Roll No	Student Name	eMail	Registered_as	Course Type
1	B21AI001	KAMUJU AASHISH	kamuju.1@iitj.ac.in	Credit	PC
2	B21AI002	ABHISHEK ARYA	arya.7@iitj.ac.in	Credit	PC
3	B21AI003	ADARSH RAJ SHRIVASTAVA	shrivastava.10@iitj.ac.in	Credit	PC
4	B21AI004	ADEEM HARIS	haris.1@iitj.ac.in	Credit	PC
5	B21AI005	AKRITI GUPTA	gupta.97@iitj.ac.in	Credit	PC
6	B21AI006	ARVIND KUMAR SHARMA	sharma.126@iitj.ac.in	Credit	PC

Unstructured Data

Data that does not follow a predefined schema, e.g.,

Yes.

Video

- -> Speech-to-Text
- -> Keyword Mining
- -> Map the keywords to hashtags
- -> Add the hashtags to the video.

Thus we can generate Structured Data from Unstructured Data, and then combine them.

A case study on Amazon.in

Search for "Echo Dot (3rd Gen) - Smart speaker with Alexa (Black)" on Amazon.in

and

analyze the types of contents on the page.

They store Big Data in their **Data Lakes**.

All structured and unstructured data are stored in the raw format in an organization's Data Lakes. When they want to analyze a particular subset of data (say, their HR data), they use advanced Data Lake "query processing" software like **Apache Pig**.

Earlier, organizations used to store their data into **topic-specific** storages for topic-specific querying. Such storages are called **Data Warehouses**.

Data Warehouses and Data Lakes both are critical for generating **Business Intelligence**.

Where does an organization host its Data Lakes?

- Big companies create their own **Data Centers** to host their Data Lakes, e.g., Amazon, Google.
- Smaller companies subscribe to big companies' data centers to host their Data Lakes. Such subscriptionbased storing mechanism is known as storing in the Cloud.

A big portion of big companies' revenues comes from providing such **cloud services**.

Finally, let us formally define Big Data

What is **Big Data**?

- "Big data is **high-volume**, **high-velocity** and **high-variety** information assets that demand <u>cost-effective</u>, innovative forms of information processing for enhanced insight and decision making." ~ Gartner, Inc.

Three Vs of Big Data

• Volume: Quantity

- A typical PC might have had 10 gigabytes of storage in 2000.
- Today, Facebook ingests 500 terabytes of new data every day.
- Boeing 737 will generate 240 terabytes of flight data during a single cross-country flight
- Smart phones and IoT => Continual generation of data

• Variety: Type of data

- Big Data beyond numbers, dates, and strings; may be structured, semi-structured or unstructured
- Big Data is multimodal: geospatial, temporal, 3D data, audio, video, unstructured text, including log files and mixed media.
- Traditional database systems were designed to address smaller volumes of structured data, had fewer updates, and operated on, consistent data structures.

• Velocity: Operational speed & Data speed

- Clickstreams and ad impressions capture user behavior at millions of events per second
- High-frequency stock trading algorithms reflect market changes within microseconds
- Machine to machine processes exchange data between billions of devices
- Infrastructure and sensors generate massive log data in real-time
- On-line gaming systems support millions of concurrent users, each producing multiple inputs per second.
- Also, please go through the "Case studies" section on <u>https://en.wikipedia.org/wiki/Big_data</u>

Parameters of Big Data

- **Veracity:** Low signal-to-noise ratio. The correctness of captured data can vary greatly, affecting the correctness of the analysis.
- Exhaustive: Whether data pertaining to all possible use-cases of the system or the problem concerned are recorded or not
- Fine-grained and uniquely lexical: The proportion of specific data of each element, per element collected, and if the element and its characteristics are properly indexed or identified, respectively
- Relational: If the data collected contains commons fields that would enable a conjoining, or metaanalysis, of different data sets
- Extensional: If new fields can be incorporated or changed easily
- Scalability: Rate of expansion of data
- **Value:** The utility that can be extracted from the data
- Variability: It refers to data whose properties are context-sensitive.

References

- <u>https://www.oracle.com/in/a/ocom/docs/big-data/big-data-evolution.pdf</u>
- <u>https://www.oracle.com/big-data/structured-vs-unstructured-data/</u>

What we discussed today

- How did the Big Data Revolution happen?
- What are structured and unstructured data?
- What is the difference between a Data Lake and a Data Warehouse?
- Finally, what is the formal definition of Big Data?

What we will discuss in the next class

• What are Data Models?

Thank you