

Normalization and Denormalization of Relations

Saptarshi Pyne

Assistant Professor

Department of Computer Science and Engineering Indian Institute of Technology Jodhpur, Rajasthan, India 342030

CSL4030 Data Engineering Lecture 8
August 18th, 2023

What we discussed in the last class

An Introduction to Relational Data Model

- Relations/tables, attributes, records/tuples
- Superkey, Candidate key, Primary key and foreign key
- Entity-Relational model, ER diagrams, UML
- Functional dependency, Prime and non-prime attributes
 - An attribute is called a 'prime attribute' of a relation if the attribute belongs to at least one candidate key.

Things we will discuss today

- Why do we need to normalize relations?
- How can we normalize relations?
- When do we need to denormalize relations?

Reference

- R. ELMASRI, S.B. NAVATHE (2017), Fundamentals of Database Systems, Pearson Education, 7th Edition.
 - Chapter 14: Basics of Functional Dependencies and Normalization for Relational Databases

Why do we need to normalize relations?

- To avoid redundancies and
- 'anomalies' = inconsistencies
 - Insertion anomaly
 - Update anomaly
 - Deletion anomaly

How can we normalize relations?

- By 'decomposing' relations into smaller relations while ensuring that the 'non-additive join proerty' or 'lossless join property' holds
- and optionally the 'dependency preservation property' holds
- Thus, we can achieve higher 'normal forms'.
 - What are the widely used normal forms?

First normal form (1NF)

 A relation R is in 1NF if it does not posses any multivalued attributes.

Second normal form (2NF)

- A relation R is in 2NF if
 - it is in **1NF**, and
 - no non-prime attributes are partially functionally dependent on the primary key.

Third normal form (3NF)

- A relation R is in 3NF if
 - it is in **2NF**, and
 - no non-prime attributes are transitively functionally dependent on the primary key.

Boyce-Codd normal form (BCNF)

- A relation R is in BCNF if
 - it is in **3NF**, and
 - whenever a nontrivial functional dependency X->A holds in R, then X must be a superkey of R.

When do we need to denormalize relations?

- In situations where we need to frequently 'join' multiple relations to serve incoming queries
- Types of joins
 - Inner Join
 - Left (outer) join
 - Right (outer) join
 - Full join
 - Natural join

Things we discussed today

- Why do we need to normalize relations?
 - To avoid redundancies and 'anomalies'
- How can we normalize relations?
 - By 'decomposing' relations into smaller relations
- When do we need to denormalize relations?
 - When we have frequent 'join' queries

Reference

- R. ELMASRI, S.B. NAVATHE (2017), Fundamentals of Database Systems, Pearson Education, 7th Edition.
 - Chapter 14: Basics of Functional Dependencies and Normalization for Relational Databases

In the next class, we will discuss

NoSQL databases

Thank you