

Distributed Data Storage and Management Part III

Saptarshi Pyne Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Jodhpur, Rajasthan, India 342030

> CSL4030 Data Engineering Lecture 13 August 30th, 2023

What we discussed in the last class

- Distributed data storage
 - Homogeneous and heterogeneous systems
 - Fragmentation and replication
 - Query processing with fragments

Data transparency

- Fragmentation, replication, and location transparencies
- Name server (network issues, server crash)
- Site identifiers
- Hybrid: Aliases stored at each site

Transactions

- A transaction is a logical unit of work. E.g., a set of queries that performs a single task.
- When executing transactions on distributed databases, we must honour the ACID properties.

The ACID properties of transactions

- Atomicity: All-or-none.
- Consistency
- Isolation: Concurrent transactions produce the same outcome as in they were executed sequentially.
- **D**urability: The effect of a committed transaction must endure system failures.

Transaction T_i: John is sending money from account A in SBI to Kendriya Bhandar's account B in ICICI. read(A); A := A - 50; write(A); read(B); B := B + 50; write(B).

An example of a transaction

Transaction T_i: John Smith is sending money from account A in SBI to Kendriya Bhandar's account B in ICICI.

```
read(A);
A := A - 50;
write(A);
read(B);
B := B + 50;
write(B).
```

Local vs. global transactions

Local = Reads or writes the database at one particular site. Global = Reads or writes databases at multiple sites.

Q. Was the exemplary transaction a local transaction or a global transaction?

Execution of a global/distributed transaction

Each site has a log file and two computer programmes – a transaction manager (TM) and a transaction coordinator (TC).

SBI	ICICI
SBI initiates transaction T _i .	
TC _{SBI} starts the execution.	
TC _{SBI} breaks the transaction into two sub-transactions	
and distributes them to appropriate sites.	
TM _{SBI} executes the following sub-transaction:	TM _{ICICI} executes the following sub-transaction:
lock(A); read(A);	lock(B); read(B);
A = A - 50;	B = B + 50;
write(A); unlock(A);	write(B); unlock(B);
TM _{SBI} maintains a log for recovery purposes.	TM _{ICICI} maintains a log for recovery purposes.
TM _{SBI} informs TC _{SBI} that it has completed its task.	TM _{ICICI} informs TC _{SBI} that it has completed its task.
TC _{SBI} sends a "commit T _i " message to all TMs.	
TM _{sBI} adds <commit t<sub="">i> to its log.</commit>	TM_{ICICI} adds <commit <math="">T_i> to its log.</commit>

What could go wrong?

- Site failures
- Loss of messages
- Link failures and 'network partitions'

Resolution: The two-phase commit protocol (2PC)

Today we discussed

- Data transparencies
- Distributed/global transactions
 - The ACID properties

References

- A. SILBERSCHATZ, H.F. KORTH, S. SUDARSHAN (2011), Database System Concepts, McGraw Hill Publications, 6th Edition.
 - Chapter 19. Distributed Databases
- Paper: Bronson et al., "TAO: Facebook's Distributed Data Store for the Social Graph", 2013 USENIX Annual Technical Conference (USENIX ATC '13).
 - Video: <u>https://www.usenix.org/conference/atc13/technical-</u> <u>sessions/presentation/bronson</u>

Thank you