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What we discussed in the last class

• Data transparencies

• Distributed/global transactions
• The ACID properties
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A thought-provoking question

Q. In the “aliasing” scheme for providing the local 
transparency to users, what happens if the query server 
crashes?
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Execution of a global/distributed transaction

Each site has a log file and two computer programmes – a 
transaction manager (TM) and a transaction coordinator (TC).
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SBI
SBI initiates transaction Ti.
TCSBI starts the execution.
TCSBI breaks the transaction into two sub-transactions 
and distributes them to appropriate sites.

TMSBI executes the following sub-transaction:
lock(A); read(A);
A = A – 50;
write(A); unlock(A);
TMSBI maintains a log for recovery purposes.
TMSBI informs TCSBI that it has completed its task.

TCSBI sends a “commit Ti” message to all TMs.

TMSBI adds <commit Ti> to its log.

ICICI

TMICICI executes the following sub-transaction:
lock(B); read(B);
B = B + 50;
write(B); unlock(B);
TMICICI maintains a log for recovery purposes.
TMICICI informs TCSBI that it has completed its task.

TMICICI adds <commit Ti> to its log.



What could go wrong?

• Site failures

• Loss of messages

• Link failures and ‘network partitions’

Resolution: The two-phase commit protocol (2PC)
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The two-phase commit protocol (2PC)

[1] Chap 19, Korth.
[2] https://www.geeksforgeeks.org/two-phase-commit-protocol-distributed-transaction-management/
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SBI
Phase 1:
SBI initiates transaction Ti and TCSBI starts the execution.
TCSBI breaks the transaction into two sub-transactions 
and distributes them to appropriate sites along with a 
“prepare Ti” message.

TMSBI adds <prepare Ti> to its log and executes the 
following sub-transaction Ti1:
lock(A); read(A);
A = A – 50;
write(A); 
TMSBI logs <ready Ti> and sends a “ready Ti” message to 
TCSBI. If Ti1 fails, TMSBI logs <no Ti> and sends an “abort 
Ti” message to TCSBI.  

Phase 2:
If and only if TCSBI receives a “ready Ti” message from 
every TM before the timeout (ready state), TCSBI sends a 
“commit Ti” message to all TMs. Otherwise, TCSBI sends 
an “abort Ti” message to all TMs.

TMSBI adds <commit Ti> or <abort Ti> to its log, and 
commits/rolls back its Ti1.

ICICI

TMICICI logs <prepare Ti> and executes the following sub-
transaction Ti2:
lock(B); read(B);
B = B + 50;
write(B); 
TMICICI logs <ready Ti> and sends a “ready Ti” message to 
TCICICI. If Ti1 fails, TMICICI logs <no Ti> and sends an “abort 
Ti” message to TCICICI.

TMICICI adds <commit Ti> or <abort Ti> to its log, and 
commits/rolls back its Ti2.



2PC (contd.)

[1] Chap 19, Korth.
[2] https://www.geeksforgeeks.org/two-phase-commit-protocol-distributed-transaction-management/
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SBI

TMSBI sends an “acknowledge Ti” message to TCSBI. 
unlock(A);

If TCSBI receives the “acknowledge Ti” messages from all 
TMs before timeout, it logs <complete Ti>. 

SBI sends the “Payment successful” or “Payment failed” 
message to John.

ICICI

TMICICI sends an “acknowledge Ti” message to TCSBI.
unlock(B);



2PC: Handling of failures and limitations

• Site failures: Nothing happens to their log files since the 
log files are stored in local secondary storages.
• See ‘in-doubt transactions’ in Section 19.4.1.3.

• Network partitions: Similar to site failures.

• Coordinator failures: Data items A and B remain 
locked until the coordinator recovers. Even other 
transactions involving A and B get blocked. This is the 
infamous ‘Blocking problem’.
• Proposed solutions: 3PC and persistent messaging 

protocols.
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The three-phase commit protocol (3PC)

[1] Chap 19, Korth. 9

SBI
Phase 1:
Same as that of 2PC.

Phase 2:
If and only if TCSBI receives a “ready Ti” message from every TM before the timeout (ready state), TCSBI sends a 
“prepare_to_commit Ti” message to all TMs. Otherwise, TCSBI sends an “abort Ti” message to all TMs.
TCSBI crashes in the process of sending the “prepare_to_commit Ti” or “abort Ti” messages to the TMs.
(If TCSBI does not crash, Phase 3 will be similar to the remaining steps of 2PC.)

Phase 3:
If some of the TMs do not receive the “prepare_to_commit Ti” or “abort Ti” messages from TCSBI before timeout, 
their TCs contact other available TCs. If at least a pre-specified number of TCs is up, together they elect a new TC 
for this transaction (using an ‘election algorithm’).

TCnew checks whether at least one of the TMs have received a “prepare_to_commit Ti” message or not. If one of 
them did, TCnew sends a “commit Ti” message to all TMs. Otherwise, TCnew sends an “abort Ti” message to all TMs. 
Thus everything gets back on track. 



Today we discussed

• Commit protocols for distributed/global transactions 
ensure that a global transaction either commits at 
all sites or aborts at all sites.
• The two-phase commit protocol (2PC)

• The three-phase commit protocol (3PC)
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Remaining sub-topics for distributed databases

• Concurrency control with locking protocols

• Availability
• High availability at the cost of consistency: The Cloud

• Multi-database systems for heterogeneous 
distributed databases

• Distributed directory systems for managing data
• The lightweight directory access protocol (LDAP)
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Thank you


