
Distributed Data Storage and Management Part IV

Saptarshi Pyne
Assistant Professor

Department of Computer Science and Engineering
Indian Institute of Technology Jodhpur, Rajasthan, India 342030

CSL4030 Data Engineering Lecture 14

September 1st, 2023

What we discussed in the last class

• Data transparencies

• Distributed/global transactions
• The ACID properties

2

A thought-provoking question

Q. In the “aliasing” scheme for providing the local
transparency to users, what happens if the query server
crashes?

3

Execution of a global/distributed transaction

Each site has a log file and two computer programmes – a
transaction manager (TM) and a transaction coordinator (TC).

4

SBI
SBI initiates transaction Ti.
TCSBI starts the execution.
TCSBI breaks the transaction into two sub-transactions
and distributes them to appropriate sites.

TMSBI executes the following sub-transaction:
lock(A); read(A);
A = A – 50;
write(A); unlock(A);
TMSBI maintains a log for recovery purposes.
TMSBI informs TCSBI that it has completed its task.

TCSBI sends a “commit Ti” message to all TMs.

TMSBI adds <commit Ti> to its log.

ICICI

TMICICI executes the following sub-transaction:
lock(B); read(B);
B = B + 50;
write(B); unlock(B);
TMICICI maintains a log for recovery purposes.
TMICICI informs TCSBI that it has completed its task.

TMICICI adds <commit Ti> to its log.

What could go wrong?

• Site failures

• Loss of messages

• Link failures and ‘network partitions’

Resolution: The two-phase commit protocol (2PC)

5

The two-phase commit protocol (2PC)

[1] Chap 19, Korth.
[2] https://www.geeksforgeeks.org/two-phase-commit-protocol-distributed-transaction-management/

6

SBI
Phase 1:
SBI initiates transaction Ti and TCSBI starts the execution.
TCSBI breaks the transaction into two sub-transactions
and distributes them to appropriate sites along with a
“prepare Ti” message.

TMSBI adds <prepare Ti> to its log and executes the
following sub-transaction Ti1:
lock(A); read(A);
A = A – 50;
write(A);
TMSBI logs <ready Ti> and sends a “ready Ti” message to
TCSBI. If Ti1 fails, TMSBI logs <no Ti> and sends an “abort
Ti” message to TCSBI.

Phase 2:
If and only if TCSBI receives a “ready Ti” message from
every TM before the timeout (ready state), TCSBI sends a
“commit Ti” message to all TMs. Otherwise, TCSBI sends
an “abort Ti” message to all TMs.

TMSBI adds <commit Ti> or <abort Ti> to its log, and
commits/rolls back its Ti1.

ICICI

TMICICI logs <prepare Ti> and executes the following sub-
transaction Ti2:
lock(B); read(B);
B = B + 50;
write(B);
TMICICI logs <ready Ti> and sends a “ready Ti” message to
TCICICI. If Ti1 fails, TMICICI logs <no Ti> and sends an “abort
Ti” message to TCICICI.

TMICICI adds <commit Ti> or <abort Ti> to its log, and
commits/rolls back its Ti2.

2PC (contd.)

[1] Chap 19, Korth.
[2] https://www.geeksforgeeks.org/two-phase-commit-protocol-distributed-transaction-management/

7

SBI

TMSBI sends an “acknowledge Ti” message to TCSBI.
unlock(A);

If TCSBI receives the “acknowledge Ti” messages from all
TMs before timeout, it logs <complete Ti>.

SBI sends the “Payment successful” or “Payment failed”
message to John.

ICICI

TMICICI sends an “acknowledge Ti” message to TCSBI.
unlock(B);

2PC: Handling of failures and limitations

• Site failures: Nothing happens to their log files since the
log files are stored in local secondary storages.
• See ‘in-doubt transactions’ in Section 19.4.1.3.

• Network partitions: Similar to site failures.

• Coordinator failures: Data items A and B remain
locked until the coordinator recovers. Even other
transactions involving A and B get blocked. This is the
infamous ‘Blocking problem’.
• Proposed solutions: 3PC and persistent messaging

protocols.

8

The three-phase commit protocol (3PC)

[1] Chap 19, Korth. 9

SBI
Phase 1:
Same as that of 2PC.

Phase 2:
If and only if TCSBI receives a “ready Ti” message from every TM before the timeout (ready state), TCSBI sends a
“prepare_to_commit Ti” message to all TMs. Otherwise, TCSBI sends an “abort Ti” message to all TMs.
TCSBI crashes in the process of sending the “prepare_to_commit Ti” or “abort Ti” messages to the TMs.
(If TCSBI does not crash, Phase 3 will be similar to the remaining steps of 2PC.)

Phase 3:
If some of the TMs do not receive the “prepare_to_commit Ti” or “abort Ti” messages from TCSBI before timeout,
their TCs contact other available TCs. If at least a pre-specified number of TCs is up, together they elect a new TC
for this transaction (using an ‘election algorithm’).

TCnew checks whether at least one of the TMs have received a “prepare_to_commit Ti” message or not. If one of
them did, TCnew sends a “commit Ti” message to all TMs. Otherwise, TCnew sends an “abort Ti” message to all TMs.
Thus everything gets back on track.

Today we discussed

• Commit protocols for distributed/global transactions
ensure that a global transaction either commits at
all sites or aborts at all sites.
• The two-phase commit protocol (2PC)

• The three-phase commit protocol (3PC)

10

Remaining sub-topics for distributed databases

• Concurrency control with locking protocols

• Availability
• High availability at the cost of consistency: The Cloud

• Multi-database systems for heterogeneous
distributed databases

• Distributed directory systems for managing data
• The lightweight directory access protocol (LDAP)

11

References

• A. SILBERSCHATZ, H.F. KORTH, S. SUDARSHAN
(2011), Database System Concepts, McGraw Hill
Publications, 6th Edition.
• Chapter 19. Distributed Databases

• Paper: Bronson et al., “TAO: Facebook’s Distributed
Data Store for the Social Graph”, 2013 USENIX
Annual Technical Conference (USENIX ATC ‘13).
• Video:

https://www.usenix.org/conference/atc13/technical-
sessions/presentation/bronson

12

https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson

Thank you

