

Data Warehousing

Saptarshi Pyne Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Jodhpur, Rajasthan, India 342030

> **CSL4030 Data Engineering Lectures 27, 28, 29 October 13th, 20th , 26th , 2023**

What we discussed in the last class

- Hashing and Indexing
	- Hash maps or hash tables
	- B-trees
	- Sorted strings tables (SSTables)
	- Log-structured merge trees (LSM-trees)
	- Bloom filters

Transaction processing = Executing jobs that are needed to be performed with low latency i.e. in near real-time.

In the context of the term 'transaction processing', a 'transaction' could either be a database transaction with the ACID properties or a single set of read/write operations with the BASE properties.

Batch processing = Executing jobs that are scheduled to be performed periodically such as every night at 12 am.

Online transaction processing (OLTP) vs. online analytic processing (OLAP)

OLTP and OLAP are two broad categories of **storage engines**.

Storage engine = In a DBMS software, the component that manages how data is stored in main memory and on disk [1].

OLTP = Storage engines optimized for storing everyday operational data.

OLAP = Storage engines optimized for handling business analytics queries.

ETL (Extract-transform-load)

Figure 3-8. Simplified outline of ETL into a data warehouse.

Data warehouse vs. data lake vs. data lakehouse

A 'Data Lakehouse Architecture and **AI Company**'.

It is a 4 billion dollar data engineering and AI startup founded by the Apache Spark founders in 2016 at UC Berkeley.

Data lakehouse = lake + warehouse

Amazon Redshift is a **lakehouse** service offered by AWS.

Types of data warehouse schemas

- The star schema
	- Centre = A fact table with one event per row
	- Periphery = Dimensional tables each representing different dimensions of the fact table
- The snowflake schema

An example of a star schema

Figure 3-9. Example of a star schema for use in a data warehouse.

Types of data warehouse schemas (contd.)

- The star schema
- The snowflake schema
	- More normalized than the star schema
	- Demerit: Requires more joins for OLAP. More suitable for OLTP. **Dimension N**

Figure courtesy:

[https://en.wikipedia.org/wiki/Star_schema#/media/File:Star_Schema.png](https://en.wikipedia.org/wiki/Star_schema/media/File:Star_Schema.png) [https://en.wikipedia.org/wiki/Snowflake_schema#/media/File:Snowflake_schema.png](https://en.wikipedia.org/wiki/Snowflake_schema/media/File:Snowflake_schema.png)

OLTP usually handles a continuous stream of read/write operations **each affecting a small number of records**. E.g.,

UPDATE fact_sales SET quantity = 1 WHERE product_sk = 69 AND store_sk = 3;

Hence, the efficiency lies in finding the target records as fast as possible. For this reason, an efficient indexing scheme is paramount.

How do OLTP storage engines store data in disk? (contd.)

- The (classical) update-in-place paradigm
	- Update a single log file
	- Indexing data structures: B-tree, B+ tree
	- Software: Most OLTP storage engines
- The (modern) log-structured paradigm
	- Never update a block, append to the existing block, write a new block
	- Indexing data structures: SSTables, LSM-trees,
	- Software: Bitcask, LevelDB, Cassandra, HBase, Lucene

Challenges of OLTP storage engines

Disk seek time is a limiting factor due to continuous disk read/write operations.

• Resolution 1:

- Replace random-access writes with sequentialaccess writes i.e. log-structured writes. The read/write head of the hard disk can perform random access by moving its head from one location to a distant location. Such head movements are time consuming. One the other hand, sequential access allows the read/write head to continuously move to the next word. Such sequential movement is much less time consuming.

Challenges of OLTP storage engines (contd.)

Disk seek time is a limiting factor due to continuous disk read/write operations.

- Resolution 2:
	- Utilize flash-based solid state drive (SSD) disks.

Challenges of OLTP storage engines (contd.)

SSDs store data as electrical voltage in **flash memory cells** that have random access time in microseconds.

Additionally, modern SSDs utilize **parallelization** by dividing the memory cells into partitions and then having one controller for each partition.

Challenges of OLTP storage engines (contd.)

How do OLAP storage engines store data in disk?

OLTP usually generates business intelligence reports by performing queries **each reading a small number of columns from a large chunk of related records**.

E.g., (Analyze whether people are more inclined to buy fresh fruit or candy, depending on the day of the week)

SELECT **dim_date.weekday**, **dim_product.category**, SUM(**fact_sales.quantity**) AS quantity_sold

FROM fact sales

JOIN dim_date ON fact_sales.date_key = dim_date.date_key

JOIN dim_product ON fact_sales.product_sk = dim_product.product_sk WHERE

dim_date.year = 2014 AND dim_product.category IN ('Fresh fruit', 'Candy') GROUP BY dim_date.weekday, dim_product.category;

Hence, the efficiency lies in compressing column data.

The column storage strategy

A roworiented storage (a fact table usually have trillions of records and 100+ columns)

A columnoriented storage

(each column is stored in a separate file)

Columnar storage layout:

fact sales table

Figure 3-10. Storing relational data by column, rather than by row.

03

Column compression using bitmaps (one bitmap for each distinct value)

The number of bits in each bitmap $=$ The number of rows in the table.

Fast analytics using column bitmaps

Case study: SELECT quantity FROM fact sales WHERE product_sk = 31 AND store sk = 3;

product_sk values: 69, 69, 69, 74, 31, 31, 31, 31 product_sk = 31: 0 0 0 0 1 1 1 1

store_sk values: 4, 5, 5, 3, 2, 3, 3, 8 store_sk = 3: 0 0 0 1 0 1 1 0

 $(preduct_s k = 31 AND store_s k = 3)$: bitwise AND 00007110 Select only the 6th and 7th rows.

Sparse bitmaps

For a column, when the number of distinct values is small and the values are almost uniformly distributed, the vanilla bitmap encoding is sufficient.

However, when there are a large number of distinct values or the distribution of values is skewed, we will see a lot of zeroes in each bitmap. Such bitmaps are called **sparse bitmaps**.

Sparse bitmaps can be more efficiently stored as **runlength encoded (RLE) bitmaps**.

Run-length encoded (RLE) bitmaps

Figure 3-11. Compressed, bitmap-indexed storage of a single column.

Challenges of OLAP storage engines

Once the to-read values are located, we also need a mechanism to transfer/copy them from the disk to the main memory as fast as possible.

Challenges of OLAP storage engines (contd.)

Disk bandwidth is a limiting factor for transferring large volumes of data from disk to main memory.

• Resolutions: Use SSDs with higher bandwidth connection interfaces, e.g., use NVMe PCIe SSDs instead of SATA SSDs.

Challenges of OLAP storage engines (contd.)

Another way to reduce read latency in OLAP

Ready-to-read data (like ready-to-eat food)

- Materialized aggregates
	- Materialized views:

A materialized view is a database object that contains the results of a query.

Example:

CREATE MATERIALIZED VIEW mv1 AS SELECT * FROM fact_sales;

Another way to reduce read latency in OLAP (contd.)

Ready-to-read data (like ready-to-eat food)

- Materialized aggregates
	- Materialized views
		- Special type: Data cubes or OLAP cubes or hypercubes

Figure 3-12. Two dimensions of a data cube, aggregating data by summing.

References

- M. KLEPPMANN (2017), Designing Data-Intensive Applications The Big Ideas Behind Reliable, Scalable, and Maintainable Systems, O'Reilly.
	- Pages 90-108, Chapter 3: Storage and Retrieval

Thank you