
Distributed Query Processing

Saptarshi Pyne
Assistant Professor

Department of Computer Science and Engineering
Indian Institute of Technology Jodhpur, Rajasthan, India 342030

CSL4030 Data Engineering Lecture 30

October 27th, 2023

What we discussed in the last class

• Data Warehousing
• OLTP (online transaction processing)

• OLAP (online analytic processing)

2

The key factor in centralized query processing

• The number of disk accesses

3

The key factors in distributed query processing

• The number of disk accesses

• The cost of data transmission over the network

• The possibility of having several sites processing
parts of the query in parallel

4

Query processing with multiple replicas

Case study: (banking database)

SELECT * from accounts;

If (all sites have a complete replica of the ‘accounts’
table)

Choose a site with the lowest data transmission cost.
Access the table from that site.

5

Query processing with
multiple shards (horizontal fragments)

Case study: (the SBI database)

SELECT * from accounts WHERE custID=‘C005’;

Suppose, the ‘accounts’ table has been sharded across
two servers: the Jodhpur branch and the Jaipur branch.

The customer may have accounts in both the branches.

6

Query processing with multiple shards (contd.)

As a result, the query will be transformed into two
subqueries. (Query transformation)

Query:

SELECT * from accounts WHERE custID=‘C005’;

Subqueries:

SELECT * from accounts_jdh WHERE custID=‘C005’;

SELECT * from accounts_jai WHERE custID=‘C005’;

7

Query processing with multiple shards (contd.)

The corresponding relational-algebra expressions are
as follows.

accounts = (accounts_jdh U accounts_jai)

Therefore,

σcustID=‘C005’ (accounts)

= σcustID=‘C005’ (accounts_jdh U accounts_jai)

= σcustID=‘C005’ (accounts_jdh) U σcustID=‘C005’ (accounts_jai)

8

Join query processing

Query: (initiated at site S1)

accounts ⋈ depositor ⋈ branch

(‘⋈’ = natural join = join based on common attributes)

Table locations:

accounts in site S1

depositor in site S2

branch in site S3

9

Join query processing (contd.)

Strategy 1

S1: Retrieve copies of ‘depositor’ and ‘branch’ from S2
and S3, respectively. Then join all three tables locally.

Strategy 2

S2: Retrieve a copy of ‘accounts’.

S2: temp1 = (accounts ⋈ depositor).

S2: Transmit ‘temp1’ to S3.

S3: temp2 = (temp1 ⋈ branch).

S3: Transmit ‘temp2’ to S1.

10

Join query processing (contd.)

Strategy 1

S1: Retrieve copies of ‘depositor’ and ‘branch’ from S2
and S3, respectively. Then join all three tables locally.

Strategy 2

S2: Retrieve a copy of ‘accounts’.

S2: temp1 = (accounts ⋈ depositor).

S2: Transmit ‘temp1’ to S3.

S3: temp2 = (temp1 ⋈ branch).

S3: Transmit ‘temp2’ to S1.

11

Which one is the

best strategy?

Comparative analysis of the two strategies

Analysis of Strategy 1
A natural join requires searching for the matching values of the common
attributes of two tables. We can speed up the searching process if we
have the index structures of the two tables.

The index structure of a table is stored where the master copy of the
table is stored.

In Strategy 1, we are copying the ‘depositor’ and ‘branch’ tables to site
S1. Therefore, we should also copy their index structures to S1.
Otherwise, the join (accounts ⋈ depositor ⋈ branch) would be slower.

Alternatively, we can rebuild their index structures at S1. However,
rebuilding index structures requires a large of disk accesses.

12

Comparative analysis of the two strategies (contd.)

Analysis of Strategy 2

Here, we are only copying the ‘accounts’ table to its non-master site. The other two
tables are being joined at their master sites where their index structures are
present.

On the other hand, we are transmitting large tables ‘temp1’ and ‘temp2’ over the
network. Moreover, their transmissions are not parallelizable.

In Strategy 1, we are transmitting smaller tables ‘depositor’ and ‘branch’ over the
network. At the same time, their transmissions are parallelizable.

Hence, Strategy 1 has lower network cost than that of Strategy 2. On the other
hand, Strategy 2 has less disk access cost than that of Strategy 1. We should
choose a strategy based on what is more important to us. For example, if we
have a high-speed network and slower disks, we should choose Strategy 2.

13

Join strategies to exploit parallelism

Query: (initiated at site S1)

r1 ⋈ r2 ⋈ r3 ⋈ r4

Locations of the relations/tables:

r1 in site S1

r2 in site S2

r3 in site S3

r4 in site S4

14

Join strategies to exploit parallelism (contd.)

Query: (initiated at site S1)

r1 ⋈ r2 ⋈ r3 ⋈ r4

S1, S3: S1 brings a copy of r2. In parallel, S3 brings a
copy of r4.

S1, S3: S1 performs temp1 = (r1 ⋈ r2). In parallel, S3
performs temp2 = (r3 ⋈ r4).

S3: Transmits ‘temp2’ to S1.

S1: result = (temp1 ⋈ temp2).

15

The semijoin strategy

Query: (initiated at site S1)

r1 ⋈ r2

Locations of the relations/tables:

r1 in site S1

r2 in site S2

We should apply the semijoin strategy if

• r2 has a large number of tuples and

• it is expected that only a small fraction of tuples in r2 will
contribute to the join. In other words, a small number of tuples
in r2 has matching values with r1 on common attributes.

16

The semijoin strategy (contd.)

Semijoin (r1 ⋈ r2) by selecting only the contributing
tuples from r2

= r1 ⋉ r2

[A similar notation applies to the semijoin (r1 ⋈ r2) by
selecting only the contributing tuples from r1

= r1 ⋊ r2]

17

The semijoin strategy (contd.)

r1 ⋉ r2

Suppose,

R1 is the set of attribute names of r1 and

R2 is the set of attribute names of r2.

18

The semijoin strategy (contd.)

r1 ⋉ r2

S1: temp1 = ΠR1∩R2(r1).

S1: Transmit ‘temp1’ to S2.

S2: temp2 = temp1⋈ r2.

S2: Transmit ‘temp2’ to S1.

S1: result = r1⋈ temp2.

19

The semijoin strategy (contd.)

Is (r1 ⋉ r2) faster than (r1 ⋈ r2)?

S1: temp1 = ΠR1∩R2(r1).

S1: Transmit ‘temp1’ to S2. [Loss of time]

S2: temp2 = temp1 ⋈ r2.

S2: Transmit ‘temp2’ to S1. [Gain in time]

S1: result = r1 ⋈ temp2.

Yes, when the gain exceeds the loss.

20

References

• Section 19.7 ‘Distributed Query Processing’, A.
SILBERSCHATZ, H.F. KORTH, S. SUDARSHAN
(2011), Database System Concepts, McGraw Hill
Publications, 6th Edition.

21

Thank you

	Slide 1: Distributed Query Processing
	Slide 2: What we discussed in the last class
	Slide 3: The key factor in centralized query processing
	Slide 4: The key factors in distributed query processing
	Slide 5: Query processing with multiple replicas
	Slide 6: Query processing with multiple shards (horizontal fragments)
	Slide 7: Query processing with multiple shards (contd.)
	Slide 8: Query processing with multiple shards (contd.)
	Slide 9: Join query processing
	Slide 10: Join query processing (contd.)
	Slide 11: Join query processing (contd.)
	Slide 12: Comparative analysis of the two strategies
	Slide 13: Comparative analysis of the two strategies (contd.)
	Slide 14: Join strategies to exploit parallelism
	Slide 15: Join strategies to exploit parallelism (contd.)
	Slide 16: The semijoin strategy
	Slide 17: The semijoin strategy (contd.)
	Slide 18: The semijoin strategy (contd.)
	Slide 19: The semijoin strategy (contd.)
	Slide 20: The semijoin strategy (contd.)
	Slide 21: References
	Slide 22

