
Query Optimization

Saptarshi Pyne
Assistant Professor

Department of Computer Science and Engineering
Indian Institute of Technology Jodhpur, Rajasthan, India 342030

CSL4030 Data Engineering Lectures 31, 32, 33, 34, 35

October 30th, November 1st, 6rd, 8th, 10th, 2023

What we discussed in the last class

Distributed query processing

• Factors: Disk cost, network cost, parallelizability

• Strategies for
• Multiple replicas

• Multiple fragments

• Joins (such as semijoin)

2

What is a query evaluation plan?

Given a query, a query evaluation plan defines:

• what operations need to be performed,

• in which sequence the operations needs to be
performed,

• and which algorithms or indices need to be used for
executing each operation.

3

Example of a query evaluation plan

User request:

• Print the names of the instructors in the ‘Music’
department.

• Additionally, for each instructor, print the course titles
that he/she is teaching.

Query: (in the relational-algebra expression)

Korth 4

Example of a query evaluation plan (contd.)

The relational-algebra expression:

The relational-algebra expression tree:

Korth 5

Example of a query evaluation plan (contd.)

Korth 6

One of the

possible query

evaluation plans

Evaluation

starts from

the leaves

‘pipelining’ means

feeding the output to the

consumer without writing

to the disk

‘Merge join’ and ‘hash join’ are

join algorithms. They are

described in Chapter 12, Korth

(optional reading).

There could be multiple query evaluation plans for a query

Two query evaluation plans can differ in:

• what operations need to be performed,

• in which sequence the operations needs to be
performed,

• and which algorithms or indices need to be used for
executing each operation.

7

There could be multiple query evaluation plans for a query
(contd.)

Korth 8

A different query evaluation plan could use

a different join algorithm

There could be multiple query evaluation plans for a query
(contd.)

Korth 9

The

selection

operation is

done later

A different query evaluation plan could use a

different set and sequence of operations i.e. a

different relational-algebra expression tree

There could be multiple query evaluation plans for a query
(contd.)

Korth 10

The

selection

operation is

done later

A different query evaluation plan could use a

different set and sequence of operations i.e. a

different relational-algebra expressionThe

selection

operation is

done earlier

What is query optimization?

Query optimization is the process by which DBMS
selects the most cost-effective query evaluation plan for
a given query.

‘Cost’ depends on the cost model of a particular
DBMS. Usually, it refers to evaluation time (which
depends on the number of disk accesses, network cost,
parallelizability, etc.).

11

How to display the chosen query evaluation plan?

Most DBMSes provide a command that displays the
chosen evaluation plan for a query.

PostgreSQL uses the following command:

EXPLAIN <query>;

Example:

EXPLAIN SELECT * FROM film;

https://www.postgresqltutorial.com/postgresql-tutorial/postgresql-explain/ 12

Sequentially

scan the rows

https://www.postgresqltutorial.com/postgresql-tutorial/postgresql-explain/

Whose responsibility is it to perform query
optimization?

It is the responsibility of DBMS, not of the user.

In other words, query optimization must be automatically
done by a DBMS. Therefore, it is the developer’s
responsibility to write the query optimizer module.

13

How to write a query optimizer?

Pseudocode:

Enumerate all possible query evaluation plans;

For each plan

Estimate the ‘cost’;
Choose a plan with the minimal cost;

14

How to enumerate all possible query evaluation plans?

Step 1: Generate the set of all possible relational-
algebra expressions.

Step 2.1: For each algorithmic operation, generate the
set of all possible algorithms (join algorithms for join
operations, sorting algorithms for sorting operations,
etc.)

Step 2.2: For each indexing operation, generate the set
of all possible indices that can be utilised.

And so on…

15

How to generate the set of all possible relational-algebra
expressions?

Two relational-algebra expressions are called equivalent expressions if
they produce the same result.

Given a relational-algebra expression, there are equivalence rules which
helps us to generate its equivalent expressions.

These rules are usually equations. If any subexpression of the given
expression matches any side of the equation, we can replace that
subexpression with the other side of the equation to generate an
equivalent expression. Example of an equivalence rule is given below:
here, thetas are predicates (i.e. selection criteria) and E is any expression.

16

How to generate the set of all possible relational-algebra
expressions? (contd.)

Pseudocode:
Define E = any one expression that produces the desired result;
The set of all equivalent expressions EQ = genAllEquiv({E});

function genAllEquiv(set of expressions S)

Initialize S’ = S;
For each expression E in S

For each equivalence rule R

If any subexpression in E matches one side of R, replace
it with the other side of R, thus, creating a new expression E’;
S’ = S’ U E’;

If (|S’| > |S|)

S’ = genAllEquiv(S’); // Recursion
Return S’;

17

A few equivalence rules

Rule 1: (serial numbers are just for the slides. There are no universally

accepted ordering of the rules.)

Transform a conjunctive selection operation into a cascade
of σ’s.

Notations:

E’s = Relational-algebra expressions.

Θ’s = Predicates or selection criteria.

L’s = List of attributes.
18

A few equivalence rules (contd.)

Rule 2: Selection is commutative.

Rule 3: In a cascade of Π’s, retain only the final Π.

19

A few equivalence rules (contd.)

Rule 4:

where ⋈θ denotes a conditional join or a ‘theta join’.

Examples:

STUDENT ⋈STUDENT.ROLLNO=SUBJECT.RNO SUBJECT;

CUSTOMER ⋈CUSTOMER.AGE BETWEEN AGEGRP.MIN AND

AGEGRP.MAX AGEGRP;

20

A few equivalence rules (contd.)

Rule 5: Theta join is commutative.

The ordering of attributes in the result of the RHS may
differ from that of the LHS. We can simply use a
projection operation on the result of the RHS to make it
exactly the same as that of the LHS.

Since, the natural join is a special case of the theta join,
natural join is also commutative.

21

A few equivalence rules (contd.)

Rule 6(a): Natural join is associative.

Rule 6(b): Theta join is associative if θ2 does not
involve attributes from E1.

22

A few equivalence rules (contd.)

Rule 7(a): Selection is distributive over theta join if θ0
does not involve attributes from E2.

Rule 7(b): Selection is distributive over theta join if θ1

involves attributes from E1 only and θ2 involves attributes
from E2 only.

23

A few equivalence rules (contd.)

Rule 8: Projection is distributive over theta join for the
following cases.

If {L1, L3} are attributes of E1,
{L2, L4} are attributes of E2, and

{L3, L4} are involved in θ, then

24

A few equivalence rules (contd.)

Rule 9: Union and intersection are commutative.

Note: Difference is not commutative.

(E1 – E2) != (E2 – E1)

25

A few equivalence rules (contd.)

Rule 10: Union and intersection are associative.

26

A few equivalence rules (contd.)

Rule 11: Selection is distributive over union,
intersection, and difference.

σθ(E1 U E2) = σθ(E1) U σθ(E2)

σθ(E1 ∩ E2) = σθ(E1) ∩ σθ(E2)

σθ(E1 – E2) = σθ(E1) – σθ(E2)

Rule 12: Projection is distributive over union.

ΠL(E1 U E2) = (Π L(E1)) U (Π L(E2))

… there are many such rules.

27

An application of equivalence rules: Join ordering

28

A good join order can reduce the size of the intermediate results,

which in turn saves memory and evaluation time.

Consider the following relations.

instructor: instrID, instrName, dept_name, …

teaches: instrID, courseID, …

course: courseID, courseTitle, …

User request: Print the names of the music instructors along with the titles

of the courses they are teaching.

An application of equivalence rules: Join ordering
(contd.)

29

Query:

Join order 1:

σdept_name=“Music”(instructor) ⋈ (teaches ⋈ Πcourse_id, title (course))

Join order 2:

(σdept_name=“Music”(instructor) ⋈ teaches) ⋈ Πcourse_id, title (course)

Join order 3:

(σdept_name=“Music”(instructor) ⋈ Πcourse_id, title (course)) ⋈ teaches

All three join orders are equivalent since

natural joins are associative (rule 6a) and commutative (rule 5).

An application of equivalence rules: Join ordering
(contd.)

30

Join order 1:

σdept_name=“Music”(instructor) ⋈ (teaches ⋈ Πcourse_id, title (course))

Join order 2:

(σdept_name=“Music”(instructor) ⋈ teaches) ⋈ Πcourse_id, title (course)

Join order 3:

(σdept_name=“Music”(instructor) ⋈ Πcourse_id, title (course)) ⋈ teaches

However, do they take the same amount of memory and evaluation time?

An application of equivalence rules: Join ordering
(contd.)

31

Join order 1:

σdept_name=“Music”(instructor) ⋈ (teaches ⋈ Πcourse_id, title (course))

Join order 2:

(σdept_name=“Music”(instructor) ⋈ teaches) ⋈ Πcourse_id, title (course)

Join order 3: (No common attribs, join transforms into a Cartesian product)

(σdept_name=“Music”(instructor) x Πcourse_id, title (course)) ⋈ teaches

However, do they take the same amount of memory and evaluation time?

They do not. Join order 2 requires the least amount of memory and time.

Minimal set of query equivalence rules

When developing a query optimizer module, we should
use a minimal set of equivalence rules.

In a minimal set of equivalence rules, no rules can be
derived by combining a subset of the other rules.

32

How to enumerate all possible query evaluation plans?
(recap)

Step 1: Generate the set of all possible relational-
algebra expressions.

Step 2.1: For each algorithmic operation, generate the
set of all possible algorithms (join algorithms for join
operations, sorting algorithms for sorting operations,
etc.)

Step 2.2: For each indexing operation, generate the set
of all possible indices that can be utilised.

And so on…

33

How to write a query optimizer? (recap)

Pseudocode:

Enumerate all possible query evaluation plans;

For each plan

Estimate the ‘cost’;
Choose a plan with the minimal cost;

34

How to write a query optimizer? (recap)

Pseudocode:

Enumerate all possible query evaluation plans;

For each plan

Estimate the ‘cost’;
Choose a plan with the minimal cost;

35

How to estimate the cost of a query evaluation plan?

The cost of a plan depends on the costs of the
operations involved.

The cost of each operation in turn depends on the sizes
of its operators (which are usually relations).

Hence, a query optimizer stores metadata information
about the relations in database-system catalogs.

36

Catalog information

For each relation r,

• The number of tuples (nr)

• The length of each tuple in bytes (lr)

• The number of distinct values of each attribute.
V(A, r) = The number of distinct values of attribute A
in r = |ΠA(r)| since projection returns distinct values.

For a set of attributes that are accessed together, say
S, DBMS can catalog V(S, r).

37

Catalog information (contd.)

For each relation r (contd.),

• The number of tuples that fit into one disk block aka.
the blocking factor of r (fr)

• The number of blocks that r occupies (br)

𝑏𝑟 =
𝑛𝑟

𝑓𝑟

38

Catalog information (contd.)

For each index structure (suppose, a B+ tree),

• The height of the tree

• The number of leaves

39

Catalog information (contd.)

A query optimizer usually stores additional complex
metadata in catalogs, such as a histogram for the values of
an attribute.

The shown histogram is an
equi-width histogram i.e.
each value range has the
same width.

The query optimizer can also store an equi-depth histogram
where the range widths vary but the number of values in
each range is the same.

Korth 40

Selection size estimation

Metadata like histograms are very helpful in estimating
the number of tuples that will match a selection criteria.

Generating a histogram for millions of tuples will be
costly. Hence, a query optimizer tends to randomly
sample a few thousand tuples to generate the
histogram.

41

Selection size estimation (contd.)

Based on the histogram, the query optimizer estimates
the number of tuples that matches a selection criteria.
Depending on the estimation, the optimizer chooses the
best query evaluation plan.

When the plan is executed, the actual number of
matching tuples is revealed. If the actual number is far
from the estimated number, the optimizer redo the
random sampling or use all the tuples to generate the
histogram. This is a self-correction mechanism of the
optimizer.

42

Selection size estimation (contd.)

• For a conjunctive selection

• For a disjunctive selection

• For a negative selection (e.g., SELECT * FROM
employee WHERE dependent IS NOT NULL)

Please study Section 13.3.2 from Korth.

43

Keeping catalog information up-to-date

Updating catalog information is resource intensive.
Hence, it is usually not updated every time a relation or
index structure is modified.

It is usually done when the DBMS has a light workload
i.e. resources (disk, network, etc.) are available.

As a result, the cost estimated using the catalogs is not
expected to be accurate but close to accurate.

44

Join size estimation

Estimate the output size of:
r ⋈ s

No common attributes.
nr * ns * (lr + ls) bytes

The common attributes are part of r’s primary key.
Each tuple of s can join with at most one tuple of r.

≤ ns * (lr + ls) bytes

45

Join size estimation (contd.)

The primary key of r is referenced by a foreign key in s.
= ns * (lr + ls) bytes

46

Join size estimation (contd.)

The set of common attributes {A} contain the primary
key of neither r nor s.

Case 1: If r and s do not have histograms on {A},
assume each value is equally likely.

= min
(𝑛𝑟 ∗ 𝑛𝑠)

𝑉(𝐴, 𝑟)
,

(𝑛𝑟 ∗ 𝑛𝑠)

𝑉(𝐴, 𝑠)
∗ (lr + ls) bytes

47

Join size estimation (contd.)

Case 2(a): If
- r and s have histograms on {A} and

- the histograms are on the same ranges.

Figure courtesy: https://statisticsbyjim.com/basics/histograms/ 48

Blue = r

Red = s

https://statisticsbyjim.com/basics/histograms/

Join size estimation (contd.)

For each attribute Ai in {A}
 For each histogram range/bin

 Use the equation from Case 1;
 Replace nr with the actual frequency in r;
 Replace ns with the actual frequency in s;
 Replace V(A, r) and V(A, s) with the number
 of distinct values in the range;

49Figure courtesy: https://statisticsbyjim.com/basics/histograms/

https://statisticsbyjim.com/basics/histograms/

Join size estimation (contd.)

Case 2(b): If
- r and s have histograms on {A} and

- the histograms are NOT on the same ranges.

Figure courtesy: https://statisticsbyjim.com/basics/histograms/ 50

Relation r, attribute Ai Relation s, attribute Ai

https://statisticsbyjim.com/basics/histograms/

Join size estimation (contd.)

Solution hint:
For each range in each histogram, assume each value
is equally frequent.

Figure courtesy: https://statisticsbyjim.com/basics/histograms/ 51

Relation r, attribute Ai Relation s, attribute Ai

https://statisticsbyjim.com/basics/histograms/

Join size estimation (contd.)

Please see the solution given in Korth.

Korth 52

Size estimation for other operations

Please see Korth Section 13.3.4 to learn how to perform
size estimations for the following operations:

• projection

• aggregation: count, sum, average, etc.

• set operations

• outer join

Korth 53

Estimating the number of unique values

Estimation of V(A, r ⋈ s)

Suppose, A is made up of A1 from r and A2 from s.

Korth 54

In case, the result of the join does

not have all possible values of A

How to write a query optimizer? (recap)

Pseudocode:

Enumerate all possible query evaluation plans;

For each plan

Estimate the ‘cost’;
Choose a plan with the minimal cost;

55

How to write a query optimizer? (recap)

Pseudocode:

Enumerate all possible query evaluation plans;

For each plan

Estimate the ‘cost’;
Choose a plan with the minimal cost;

56

Such exhaustive search-based query

optimization is also known as the

cost-based query optimization.

The optimization cost

The cost of finding an optimal query evaluation plan is
called the optimization cost.

For some type of queries, the optimization cost could be
too high to consider optimization at all.
Example:

For a cascade of (n-1) natural join operations with ‘n’
operands, the optimization cost for finding an optimal
join order can be very high.

57

Finding an optimal join order

For a cascade of (n-1) natural join operations with ‘n’
operands, there are (2(n – 1))!/(n-1)! possible join
orders.

Example: (n=3)
r1 ⋈ r2 ⋈ r3

For n=10, billions of join orders to consider.

58

Finding an optimal join order (contd.)

For a cascade of (n-1) natural join operations with ‘n’
operands, there are (2(n – 1))!/(n-1)! possible join
orders.

Proof sketch:

There are that many join trees
(three possible join trees
shown for n=5).

Figure courtesy: Joshi and Srivastava (BITS Pilani), International Journal of Intelligent Information Technologies, 9(1), 40-55, January-March 2013 59

Finding an optimal join order (contd.)

A join tree is a full binary tree where leaves are
relations and internal nodes are join operators.

Three main types of join trees (from L to R):
- Left-deep = Each right operand is a fresh relation. The
left operand could be an intermediate stored relation.

- Bushy (left- plus right-deep)

- Right-deep

Figure courtesy: Joshi and Srivastava (BITS Pilani), International Journal of Intelligent Information Technologies, 9(1), 40-55, January-March 2013 60

The number of full binary trees with ‘n’ unlabelled
leaves
= The (n-1)th Catalan number
= (1/n)*(2(n-1)C(n-1))

The number of ways to label ‘n’ leaves = n!

Therefore, the number of full binary trees with ‘n’
labelled leaves
= (1/n)*(2(n-1)C(n-1))*n!
= (2(n – 1))!/(n-1)!

Finding an optimal join order (contd.)

https://resources.mpi-inf.mpg.de/departments/d5/teaching/ss09/queryoptimization/lecture4.pdf 61

https://resources.mpi-inf.mpg.de/departments/d5/teaching/ss09/queryoptimization/lecture4.pdf

Q. How many join orders are possible for the following
query? (r1 ⋈ r2 ⋈ r3) ⋈ r4 ⋈ r5

Ans. 144

12 join orders are possible for (r1 ⋈ r2 ⋈ r3).
12 join orders are possible for (…) ⋈ r4 ⋈ r5.
12 * 12 = 144.

What if the join order is partially specified

62

However, we can find an optimal join order by
examining only 24 join orders.

1. Examine 12 possible join orders for (r1 ⋈ r2 ⋈ r3).
2. Join (r1 ⋈ r2 ⋈ r3) and save the result in r1’.
3. Examine 12 possible join orders for (r1’ ⋈ r4 ⋈ r5).

Number of join orders examined = (12 + 12) = 24

Thus, when applicable, we can divide the expression
into subexpressions and find an optimal join order for
each subexpression. (Divide and conquer)

What if the join order is partially specified (contd.)

63

However, we can find an optimal join order by
examining only 24 join orders.

1. Examine 12 possible join orders for (r1 ⋈ r2 ⋈ r3).
2. Join (r1 ⋈ r2 ⋈ r3) and save the result in r1’.
3. Examine 12 possible join orders for (r1’ ⋈ r4 ⋈ r5).

Number of join orders examined = (12 + 12) = 24

Thus, when applicable, we can divide the expression
into subexpressions and find an optimal join order for
each subexpression. (Divide and conquer)

What if the join order is partially specified (contd.)

64

(r1 ⋈ r2 ⋈ r3) ⋈ (r4 ⋈ r5 ⋈ r6)

Yes, when possible, we can divide the expression into
subexpressions and find an optimal join order for each
subexpression. (Divide and conquer)

Can we utilize parallelization?

65

(r1 ⋈ r2 ⋈ r3) ⋈ (r4 ⋈ r5 ⋈ r6) ⋈ (r1 ⋈ r2 ⋈ r3)

- First, we should design an algorithm for efficiently
detecting duplicate subexpressions.

- Then we can find an optimal join order for a
subexpression only once and memoize it for the
duplicate occurrences. (Dynamic programming)

How should we handle duplicate subexpressions?

66

We should also utilize heuristics

• Perform selection operations as early as possible

• Perform projections early

• Avoid Cartesian products, etc.

Demerit:
Heuristics do not always lead to an optimal query
evaluation plan.
σθ(r1 ⋈ r2) : Suppose, we have an index on the join
attributes but not on the ‘θ’ attributes. Then performing
the selection after the join might be optimal.

67

Combining the best of both worlds – exhaustive and heuristic

Most commercial optimizers set an optimization cost
budget (say, 5 sec in time) before performing
optimization.

The goal is:
(Optimization cost budget + cost of executing the
chosen query evaluation plan) should be far less than
the cost of executing a random query evaluation plan.

68

Combining the best of both worlds – exhaustive and heuristic
(contd.)

Most commercial optimizers, first, use some cost-
efficient heuristics to generate some plans.

Using these initial plans, the optimizer makes a
prediction about the execution cost of an optimal plan.

Utilizing the prediction, the optimizer sets its
optimization cost budget.

69

Combining the best of both worlds – exhaustive and heuristic
(contd.)

Subsequently, the optimizer initiates an exhaustive
search.

If the optimization cost budget is reached before the
search ends, the optimizer terminates the search and
chooses the best plan found up to that point.

70

The Halloween problem (IBM, 1976)

“Pat (Patricia Selinger) and Morton (Morton Astrahan) discovered
this problem on Halloween...

I remember they came into my office and said, ‘Chamberlin, look
at this. We have to make sure that when the optimizer is making
a plan for processing an update, it doesn't use an index that is
based on the field that is being updated. How are we going to do
that?’

It happened to be on a Friday, and we said, ‘Listen, we are not
going to be able to solve this problem this afternoon. Let's just give
it a name. We’ll call it the Halloween Problem and we’ll work on it
next week.’ And it turns out it has been called that ever since.”

~ Oral history interview with Donald D. Chamberlin, co-designer of
SQL

https://conservancy.umn.edu/handle/11299/107215 71

https://conservancy.umn.edu/handle/11299/107215

The Halloween problem (contd.)

Pat, Morton, and Don were trying to write a query
optimizer function for UPDATE queries that give raise to
the employees whose salaries are less than a certain
amount.

(This happens to be the exact query they were tinkering with)

UPDATE employee

SET salary = salary * 1.1

WHERE salary < $25,000;

72

The Halloween problem (contd.)

Now, without query optimization, the DBMS first executes
the following query (given in the MySQL syntax) to retrieve
the list of target tuples.

SELECT @target := empid FROM employee WHERE salary
< $25,000;

Then update the target tuples.

UPDATE employee

SET salary = salary * 1.1

WHERE empid = @id;
73

The Halloween problem (contd.)

However, such sequential execution is extremely time
consuming for large organizations with thousands of
employees.

Hence, Pat and Morton were attempting for
parallelization: there was a scanner that was finding the
target tuples and there was an updater that was
updating the already found tuples. Both were running in
parallel.

74

The Halloween problem (contd.)

The problem was that the ‘employee’ table was indexed (e.g.,
column-oriented RLE bitmap indexed) as large tables should be.

Hence, as soon as a tuple was updated, it was reindexed in the
index structure. The bug was encountered when the index of the
updated tuple was placed ahead of the scanner.

Suppose, the scanner is scanning in the ascending order of
salaries. It scanned an employee with a salary of $20,000 and
marked it as a target. The updater updated the salary to be
$22,000. At this point, suppose, the scanner is still scanning the
employees with salary $21,000. Therefore, the scanner will see
this employee again and mark it as a target. It may keep
happening in a loop until the employee’s salary reaches $25,000
or above.

75

The Halloween problem (contd.)

Pat and Morton observed exactly that. When the query
completed, all the employees had salaries of $25,000 or
above.

One of the solutions:
- If the updater increases the salary, then the scanner
needs to scan in the descending order of salaries.
- On the other hand, if the updater decreases the salary,
then the scanner needs to scan in the ascending order
of salaries.

76

The Halloween problem (contd.)

If for some database conditions, we can not ensure that the
updater will never get ahead of the scanner i.e. it is not
guaranteed that the Halloween problem will not occur,
query optimization must not be performed.

Because data integrity is more important than query
optimization for such data.

In general, the Halloween problem corresponds to any large
indexed table where update operations take place
periodically, e.g., on Diwali, Amazon wants to apply a flat
50% discount on all products with prices less than ₹1,999.

Section 13.6.3, Optimization of Updates, Korth 77

Materialized views

• How to keep a materialized view up-to-date a.k.a.
‘how to maintain a materialized view’?
• Incremental ‘materialized view maintenance’: Compute

differential in the result using only the differential in the
input (the insert and delete operations).

• How to select which views should be materialized?
• Not in the syllabus but please remember the question

since it is the first question to answer when designing a
materialized view.

78

Examples of commercial query optimizers

1979: The System R Optimizer was developed for IBM
System R (1974), which was the first implementation of
SQL.

1989: Starburst. It was the successor of the System R
Optimizer and used in the initial versions of IBM DB2.

1993-95: Volcano and Cascades were developed for
Microsoft SQL server.

79

Data Sidekick: AI based SQL query optimizer

https://www.airops.com/blog/using-ai-to-optimize-your-sql-queries
https://www.youtube.com/watch?v=SW2Zj3Xktv4

80

AirOps is a startup

founded in Miami in

2022. It “allows users to

create AI-enabled

applications on top of

Large Language

Models (LLMs).” They

have raised $7 million

in the first seed round.

https://www.airops.com/blog/using-ai-to-optimize-your-sql-queries
https://www.youtube.com/watch?v=SW2Zj3Xktv4

References

• Chapter 13 ‘Query Optimization’, A.
SILBERSCHATZ, H.F. KORTH, S. SUDARSHAN
(2011), Database System Concepts, McGraw Hill
Publications, 6th Edition.

81

Thank you

	Slide 1: Query Optimization
	Slide 2: What we discussed in the last class
	Slide 3: What is a query evaluation plan?
	Slide 4: Example of a query evaluation plan
	Slide 5: Example of a query evaluation plan (contd.)
	Slide 6: Example of a query evaluation plan (contd.)
	Slide 7: There could be multiple query evaluation plans for a query
	Slide 8: There could be multiple query evaluation plans for a query (contd.)
	Slide 9: There could be multiple query evaluation plans for a query (contd.)
	Slide 10: There could be multiple query evaluation plans for a query (contd.)
	Slide 11: What is query optimization?
	Slide 12: How to display the chosen query evaluation plan?
	Slide 13: Whose responsibility is it to perform query optimization?
	Slide 14: How to write a query optimizer?
	Slide 15: How to enumerate all possible query evaluation plans?
	Slide 16: How to generate the set of all possible relational-algebra expressions?
	Slide 17: How to generate the set of all possible relational-algebra expressions? (contd.)
	Slide 18: A few equivalence rules
	Slide 19: A few equivalence rules (contd.)
	Slide 20: A few equivalence rules (contd.)
	Slide 21: A few equivalence rules (contd.)
	Slide 22: A few equivalence rules (contd.)
	Slide 23: A few equivalence rules (contd.)
	Slide 24: A few equivalence rules (contd.)
	Slide 25: A few equivalence rules (contd.)
	Slide 26: A few equivalence rules (contd.)
	Slide 27: A few equivalence rules (contd.)
	Slide 28: An application of equivalence rules: Join ordering
	Slide 29: An application of equivalence rules: Join ordering (contd.)
	Slide 30: An application of equivalence rules: Join ordering (contd.)
	Slide 31: An application of equivalence rules: Join ordering (contd.)
	Slide 32: Minimal set of query equivalence rules
	Slide 33: How to enumerate all possible query evaluation plans? (recap)
	Slide 34: How to write a query optimizer? (recap)
	Slide 35: How to write a query optimizer? (recap)
	Slide 36: How to estimate the cost of a query evaluation plan?
	Slide 37: Catalog information
	Slide 38: Catalog information (contd.)
	Slide 39: Catalog information (contd.)
	Slide 40: Catalog information (contd.)
	Slide 41: Selection size estimation
	Slide 42: Selection size estimation (contd.)
	Slide 43: Selection size estimation (contd.)
	Slide 44: Keeping catalog information up-to-date
	Slide 45: Join size estimation
	Slide 46: Join size estimation (contd.)
	Slide 47: Join size estimation (contd.)
	Slide 48: Join size estimation (contd.)
	Slide 49: Join size estimation (contd.)
	Slide 50: Join size estimation (contd.)
	Slide 51: Join size estimation (contd.)
	Slide 52: Join size estimation (contd.)
	Slide 53: Size estimation for other operations
	Slide 54: Estimating the number of unique values
	Slide 55: How to write a query optimizer? (recap)
	Slide 56: How to write a query optimizer? (recap)
	Slide 57: The optimization cost
	Slide 58: Finding an optimal join order
	Slide 59: Finding an optimal join order (contd.)
	Slide 60: Finding an optimal join order (contd.)
	Slide 61: Finding an optimal join order (contd.)
	Slide 62: What if the join order is partially specified
	Slide 63: What if the join order is partially specified (contd.)
	Slide 64: What if the join order is partially specified (contd.)
	Slide 65: Can we utilize parallelization?
	Slide 66: How should we handle duplicate subexpressions?
	Slide 67: We should also utilize heuristics
	Slide 68: Combining the best of both worlds – exhaustive and heuristic
	Slide 69: Combining the best of both worlds – exhaustive and heuristic (contd.)
	Slide 70: Combining the best of both worlds – exhaustive and heuristic (contd.)
	Slide 71: The Halloween problem (IBM, 1976)
	Slide 72: The Halloween problem (contd.)
	Slide 73: The Halloween problem (contd.)
	Slide 74: The Halloween problem (contd.)
	Slide 75: The Halloween problem (contd.)
	Slide 76: The Halloween problem (contd.)
	Slide 77: The Halloween problem (contd.)
	Slide 78: Materialized views
	Slide 79: Examples of commercial query optimizers
	Slide 80: Data Sidekick: AI based SQL query optimizer
	Slide 81: References
	Slide 82

