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What we discussed in the last class

Distributed query processing

• Factors: Disk cost, network cost, parallelizability

• Strategies for
• Multiple replicas

• Multiple fragments

• Joins (such as semijoin)
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What is a query evaluation plan?

Given a query, a query evaluation plan defines: 

• what operations need to be performed,

• in which sequence the operations needs to be 
performed,

• and which algorithms or indices need to be used for 
executing each operation. 
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Example of a query evaluation plan

User request:

• Print the names of the instructors in the ‘Music’ 
department.

• Additionally, for each instructor, print the course titles 
that he/she is teaching.

Query: (in the relational-algebra expression)

Korth 4



Example of a query evaluation plan (contd.)

The relational-algebra expression:

The relational-algebra expression tree:

Korth 5



Example of a query evaluation plan (contd.)

Korth 6

One of the 

possible query 

evaluation plans

Evaluation 

starts from 

the leaves

‘pipelining’ means 

feeding the output to the 

consumer without writing 

to the disk

‘Merge join’ and ‘hash join’ are 

join algorithms. They are 

described in Chapter 12, Korth 

(optional reading).



There could be multiple query evaluation plans for a query

Two query evaluation plans can differ in: 

• what operations need to be performed,

• in which sequence the operations needs to be 
performed,

• and which algorithms or indices need to be used for 
executing each operation.
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There could be multiple query evaluation plans for a query 
(contd.)

Korth 8

A different query evaluation plan could use 

a different join algorithm



There could be multiple query evaluation plans for a query 
(contd.)

Korth 9

The 

selection 

operation is 

done later

A different query evaluation plan could use a 

different set and sequence of operations i.e. a 

different relational-algebra expression tree



There could be multiple query evaluation plans for a query 
(contd.)

Korth 10

The 

selection 

operation is 

done later

A different query evaluation plan could use a 

different set and sequence of operations i.e. a 

different relational-algebra expressionThe 

selection 

operation is 

done earlier



What is query optimization?

Query optimization is the process by which DBMS 
selects the most cost-effective query evaluation plan for 
a given query.

‘Cost’ depends on the cost model of a particular 
DBMS. Usually, it refers to evaluation time (which 
depends on the number of disk accesses, network cost, 
parallelizability, etc.).
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How to display the chosen query evaluation plan?

Most DBMSes provide a command that displays the 
chosen evaluation plan for a query.

PostgreSQL uses the following command:

EXPLAIN <query>;

Example:

EXPLAIN SELECT * FROM film; 

https://www.postgresqltutorial.com/postgresql-tutorial/postgresql-explain/ 12

Sequentially 

scan the rows

https://www.postgresqltutorial.com/postgresql-tutorial/postgresql-explain/


Whose responsibility is it to perform query 
optimization?

It is the responsibility of DBMS, not of the user. 

In other words, query optimization must be automatically 
done by a DBMS. Therefore, it is the developer’s 
responsibility to write the query optimizer module. 
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How to write a query optimizer? 

Pseudocode:

Enumerate all possible query evaluation plans;

For each plan

Estimate the ‘cost’;
Choose a plan with the minimal cost;
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How to enumerate all possible query evaluation plans? 

Step 1: Generate the set of all possible relational-
algebra expressions.

Step 2.1: For each algorithmic operation, generate the 
set of all possible algorithms (join algorithms for join 
operations, sorting algorithms for sorting operations, 
etc.)

Step 2.2: For each indexing operation, generate the set 
of all possible indices that can be utilised.

And so on…
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How to generate the set of all possible relational-algebra 
expressions?

Two relational-algebra expressions are called equivalent expressions if 
they produce the same result.

Given a relational-algebra expression, there are equivalence rules which 
helps us to generate its equivalent expressions. 

These rules are usually equations. If any subexpression of the given 
expression matches any side of the equation, we can replace that 
subexpression with the other side of the equation to generate an 
equivalent expression. Example of an equivalence rule is given below:
here, thetas are predicates (i.e. selection criteria) and E is any expression.
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How to generate the set of all possible relational-algebra 
expressions? (contd.)

Pseudocode:
Define E = any one expression that produces the desired result;
The set of all equivalent expressions EQ = genAllEquiv({E});

function genAllEquiv(set of expressions S)

Initialize S’ = S;
For each expression E in S

For each equivalence rule R 

If any subexpression in E matches one side of R, replace 
it with the other side of R, thus, creating a new expression E’; 
S’ = S’ U E’;

If (|S’| > |S|)

S’ = genAllEquiv(S’); // Recursion
Return S’;
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A few equivalence rules

Rule 1: (serial numbers are just for the slides. There are no universally 

accepted ordering of the rules.)

Transform a conjunctive selection operation into a cascade 
of σ’s.

Notations:

E’s = Relational-algebra expressions.

Θ’s = Predicates or selection criteria.

L’s = List of attributes.
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A few equivalence rules (contd.)

Rule 2: Selection is commutative.

Rule 3: In a cascade of Π’s, retain only the final Π.
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A few equivalence rules (contd.)

Rule 4:

where ⋈θ denotes a conditional join or a ‘theta join’.

Examples:

STUDENT ⋈STUDENT.ROLLNO=SUBJECT.RNO SUBJECT;

CUSTOMER ⋈CUSTOMER.AGE BETWEEN AGEGRP.MIN AND 

AGEGRP.MAX AGEGRP;
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A few equivalence rules (contd.)

Rule 5: Theta join is commutative.

The ordering of attributes in the result of the RHS may 
differ from that of the LHS. We can simply use a 
projection operation on the result of the RHS to make it 
exactly the same as that of the LHS.

Since, the natural join is a special case of the theta join, 
natural join is also commutative. 
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A few equivalence rules (contd.)

Rule 6(a): Natural join is associative.

Rule 6(b): Theta join is associative if θ2 does not 
involve attributes from E1.
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A few equivalence rules (contd.)

Rule 7(a): Selection is distributive over theta join if θ0 
does not involve attributes from E2.

Rule 7(b): Selection is distributive over theta join if θ1 

involves attributes from E1 only and θ2 involves attributes 
from E2 only.
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A few equivalence rules (contd.)

Rule 8: Projection is distributive over theta join for the 
following cases.

If {L1, L3} are attributes of E1,
{L2, L4} are attributes of E2, and

{L3, L4} are involved in θ, then
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A few equivalence rules (contd.)

Rule 9: Union and intersection are commutative.

Note: Difference is not commutative.

(E1 – E2) != (E2 – E1)
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A few equivalence rules (contd.)

Rule 10: Union and intersection are associative.
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A few equivalence rules (contd.)

Rule 11: Selection is distributive over union, 
intersection, and difference.

σθ(E1 U E2) = σθ(E1) U σθ(E2)

σθ(E1 ∩ E2) = σθ(E1) ∩ σθ(E2)

σθ(E1 – E2) = σθ(E1) – σθ(E2)

Rule 12: Projection is distributive over union.

ΠL(E1 U E2) = (Π L(E1))  U  (Π L(E2))

… there are many such rules.
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An application of equivalence rules: Join ordering

28

A good join order can reduce the size of the intermediate results,

which in turn saves memory and evaluation time.

Consider the following relations.

instructor: instrID, instrName, dept_name, … 

teaches: instrID, courseID, …

course: courseID, courseTitle, …

User request: Print the names of the music instructors along with the titles 

of the courses they are teaching.



An application of equivalence rules: Join ordering 
(contd.)
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Query:

Join order 1:

σdept_name=“Music”(instructor) ⋈ (teaches ⋈ Πcourse_id, title (course))

Join order 2:

(σdept_name=“Music”(instructor) ⋈ teaches) ⋈ Πcourse_id, title (course)

Join order 3:

(σdept_name=“Music”(instructor) ⋈ Πcourse_id, title (course)) ⋈ teaches

All three join orders are equivalent since 

natural joins are associative (rule 6a) and commutative (rule 5).



An application of equivalence rules: Join ordering 
(contd.)

30

Join order 1:

σdept_name=“Music”(instructor) ⋈ (teaches ⋈ Πcourse_id, title (course))

Join order 2:

(σdept_name=“Music”(instructor) ⋈ teaches) ⋈ Πcourse_id, title (course)

Join order 3:

(σdept_name=“Music”(instructor) ⋈ Πcourse_id, title (course)) ⋈ teaches

However, do they take the same amount of memory and evaluation time?



An application of equivalence rules: Join ordering 
(contd.)

31

Join order 1:

σdept_name=“Music”(instructor) ⋈ (teaches ⋈ Πcourse_id, title (course))

Join order 2:

(σdept_name=“Music”(instructor) ⋈ teaches) ⋈ Πcourse_id, title (course)

Join order 3: (No common attribs, join transforms into a Cartesian product)

(σdept_name=“Music”(instructor) x Πcourse_id, title (course)) ⋈ teaches

However, do they take the same amount of memory and evaluation time?

They do not. Join order 2 requires the least amount of memory and time.



Minimal set of query equivalence rules

When developing a query optimizer module, we should 
use a minimal set of equivalence rules. 

In a minimal set of equivalence rules, no rules can be 
derived by combining a subset of the other rules.
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How to enumerate all possible query evaluation plans? 
(recap) 

Step 1: Generate the set of all possible relational-
algebra expressions.

Step 2.1: For each algorithmic operation, generate the 
set of all possible algorithms (join algorithms for join 
operations, sorting algorithms for sorting operations, 
etc.)

Step 2.2: For each indexing operation, generate the set 
of all possible indices that can be utilised.

And so on…
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How to write a query optimizer? (recap) 

Pseudocode:

Enumerate all possible query evaluation plans;

For each plan

Estimate the ‘cost’;
Choose a plan with the minimal cost;
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How to write a query optimizer? (recap)

Pseudocode:

Enumerate all possible query evaluation plans;

For each plan

Estimate the ‘cost’;
Choose a plan with the minimal cost;
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How to estimate the cost of a query evaluation plan?

The cost of a plan depends on the costs of the 
operations involved.

The cost of each operation in turn depends on the sizes 
of its operators (which are usually relations).

Hence, a query optimizer stores metadata information 
about the relations in database-system catalogs.
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Catalog information

For each relation r,

• The number of tuples (nr)

• The length of each tuple in bytes (lr)

• The number of distinct values of each attribute.
V(A, r) = The number of distinct values of attribute A 
in r = |ΠA(r)| since projection returns distinct values.

For a set of attributes that are accessed together, say 
S, DBMS can catalog V(S, r).  
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Catalog information (contd.)

For each relation r (contd.),

• The number of tuples that fit into one disk block aka. 
the blocking factor of r (fr)

• The number of blocks that r occupies (br)

𝑏𝑟 =
𝑛𝑟

𝑓𝑟
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Catalog information (contd.)

For each index structure (suppose, a B+ tree),

• The height of the tree

• The number of leaves
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Catalog information (contd.)

A query optimizer usually stores additional complex 
metadata in catalogs, such as a histogram for the values of 
an attribute.

The shown histogram is an
equi-width histogram i.e.
each value range has the 
same width.

The query optimizer can also store an equi-depth histogram 
where the range widths vary but the number of values in 
each range is the same.

Korth 40



Selection size estimation

Metadata like histograms are very helpful in estimating 
the number of tuples that will match a selection criteria.

Generating a histogram for millions of tuples will be 
costly. Hence, a query optimizer tends to randomly 
sample a few thousand tuples to generate the 
histogram. 
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Selection size estimation (contd.)

Based on the histogram, the query optimizer estimates 
the number of tuples that matches a selection criteria. 
Depending on the estimation, the optimizer chooses the 
best query evaluation plan. 

When the plan is executed, the actual number of 
matching tuples is revealed. If the actual number is far 
from the estimated number, the optimizer redo the 
random sampling or use all the tuples to generate the 
histogram. This is a self-correction mechanism of the 
optimizer.
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Selection size estimation (contd.)

• For a conjunctive selection

• For a disjunctive selection

• For a negative selection (e.g., SELECT * FROM 
employee WHERE dependent IS NOT NULL )

Please study Section 13.3.2 from Korth.
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Keeping catalog information up-to-date

Updating catalog information is resource intensive.
Hence, it is usually not updated every time a relation or 
index structure is modified.

It is usually done when the DBMS has a light workload 
i.e. resources (disk, network, etc.) are available.

As a result, the cost estimated using the catalogs is not 
expected to be accurate but close to accurate.
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Join size estimation

Estimate the output size of:
r ⋈ s

No common attributes.
nr * ns * (lr + ls) bytes

The common attributes are part of r’s primary key.
Each tuple of s can join with at most one tuple of r.

≤ ns * (lr + ls) bytes
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Join size estimation (contd.)

The primary key of r is referenced by a foreign key in s.
= ns * (lr + ls) bytes
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Join size estimation (contd.)

The set of common attributes {A} contain the primary 
key of neither r nor s.

Case 1: If r and s do not have histograms on {A},
assume each value is equally likely.

= min
(𝑛𝑟 ∗ 𝑛𝑠)

𝑉(𝐴, 𝑟)
,

(𝑛𝑟 ∗ 𝑛𝑠)

𝑉(𝐴, 𝑠)
∗ (lr + ls) bytes
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Join size estimation (contd.)

Case 2(a): If 
- r and s have histograms on {A} and

- the histograms are on the same ranges.

Figure courtesy: https://statisticsbyjim.com/basics/histograms/ 48

Blue = r

Red = s

https://statisticsbyjim.com/basics/histograms/


Join size estimation (contd.)

For each attribute Ai in {A}
 For each histogram range/bin

  Use the equation from Case 1;
  Replace nr with the actual frequency in r;
  Replace ns with the actual frequency in s;
  Replace V(A, r) and V(A, s) with the number 
  of distinct values in the range;

49Figure courtesy: https://statisticsbyjim.com/basics/histograms/

https://statisticsbyjim.com/basics/histograms/


Join size estimation (contd.)

Case 2(b): If 
- r and s have histograms on {A} and

- the histograms are NOT on the same ranges.

Figure courtesy: https://statisticsbyjim.com/basics/histograms/ 50

Relation r, attribute Ai Relation s, attribute Ai

https://statisticsbyjim.com/basics/histograms/


Join size estimation (contd.)

Solution hint:
For each range in each histogram, assume each value 
is equally frequent.

Figure courtesy: https://statisticsbyjim.com/basics/histograms/ 51

Relation r, attribute Ai Relation s, attribute Ai

https://statisticsbyjim.com/basics/histograms/


Join size estimation (contd.)

Please see the solution given in Korth.

Korth 52



Size estimation for other operations

Please see Korth Section 13.3.4 to learn how to perform 
size estimations for the following operations:

• projection

• aggregation: count, sum, average, etc.

• set operations

• outer join

Korth 53



Estimating the number of unique values

Estimation of V(A, r ⋈ s)

Suppose, A is made up of A1 from r and A2 from s.

Korth 54

In case, the result of the join does 

not have all possible values of A



How to write a query optimizer? (recap)

Pseudocode:

Enumerate all possible query evaluation plans;

For each plan

Estimate the ‘cost’;
Choose a plan with the minimal cost;
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How to write a query optimizer? (recap)

Pseudocode:

Enumerate all possible query evaluation plans;

For each plan

Estimate the ‘cost’;
Choose a plan with the minimal cost;

56

Such exhaustive search-based query 

optimization is also known as the 

cost-based query optimization.



The optimization cost

The cost of finding an optimal query evaluation plan is 
called the optimization cost.

For some type of queries, the optimization cost could be 
too high to consider optimization at all.
Example: 

For a cascade of (n-1) natural join operations with ‘n’ 
operands, the optimization cost for finding an optimal 
join order can be very high. 
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Finding an optimal join order

For a cascade of (n-1) natural join operations with ‘n’ 
operands, there are (2(n – 1))!/(n-1)! possible join 
orders.

Example: (n=3)
r1 ⋈ r2 ⋈ r3

For n=10, billions of join orders to consider.
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Finding an optimal join order (contd.)

For a cascade of (n-1) natural join operations with ‘n’ 
operands, there are (2(n – 1))!/(n-1)! possible join 
orders.

Proof sketch:

There are that many join trees
(three possible join trees 
shown for n=5).

Figure courtesy: Joshi and Srivastava (BITS Pilani), International Journal of Intelligent Information Technologies, 9(1), 40-55, January-March 2013 59



Finding an optimal join order (contd.)

A join tree is a full binary tree where leaves are 
relations and internal nodes are join operators.

Three main types of join trees (from L to R):
- Left-deep = Each right operand is a fresh relation. The 
left operand could be an intermediate stored relation.

- Bushy (left- plus right-deep)

- Right-deep

Figure courtesy: Joshi and Srivastava (BITS Pilani), International Journal of Intelligent Information Technologies, 9(1), 40-55, January-March 2013 60



The number of full binary trees with ‘n’ unlabelled
leaves
= The (n-1)th Catalan number
= (1/n)*(2(n-1)C(n-1))

The number of ways to label ‘n’ leaves = n!

Therefore, the number of full binary trees with ‘n’ 
labelled leaves
= (1/n)*(2(n-1)C(n-1))*n!
= (2(n – 1))!/(n-1)!

Finding an optimal join order (contd.)

https://resources.mpi-inf.mpg.de/departments/d5/teaching/ss09/queryoptimization/lecture4.pdf 61
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Q. How many join orders are possible for the following 
query? (r1 ⋈ r2 ⋈ r3) ⋈ r4 ⋈ r5

Ans. 144

12 join orders are possible for (r1 ⋈ r2 ⋈ r3).
12 join orders are possible for (…) ⋈ r4 ⋈ r5.
12 * 12 = 144.

What if the join order is partially specified
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However, we can find an optimal join order by 
examining only 24 join orders.

1. Examine 12 possible join orders for (r1 ⋈ r2 ⋈ r3).
2. Join (r1 ⋈ r2 ⋈ r3) and save the result in r1’.
3. Examine 12 possible join orders for (r1’ ⋈ r4 ⋈ r5).

Number of join orders examined = (12 + 12) = 24

Thus, when applicable, we can divide the expression 
into subexpressions and find an optimal join order for 
each subexpression. (Divide and conquer)

What if the join order is partially specified (contd.)
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However, we can find an optimal join order by 
examining only 24 join orders.

1. Examine 12 possible join orders for (r1 ⋈ r2 ⋈ r3).
2. Join (r1 ⋈ r2 ⋈ r3) and save the result in r1’.
3. Examine 12 possible join orders for (r1’ ⋈ r4 ⋈ r5).

Number of join orders examined = (12 + 12) = 24

Thus, when applicable, we can divide the expression 
into subexpressions and find an optimal join order for 
each subexpression. (Divide and conquer)

What if the join order is partially specified (contd.)
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(r1 ⋈ r2 ⋈ r3) ⋈ (r4 ⋈ r5 ⋈ r6)

Yes, when possible, we can divide the expression into 
subexpressions and find an optimal join order for each 
subexpression. (Divide and conquer)

Can we utilize parallelization?
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(r1 ⋈ r2 ⋈ r3) ⋈ (r4 ⋈ r5 ⋈ r6) ⋈ (r1 ⋈ r2 ⋈ r3)

- First, we should design an algorithm for efficiently 
detecting duplicate subexpressions.

- Then we can find an optimal join order for a 
subexpression only once and memoize it for the 
duplicate occurrences. (Dynamic programming)

How should we handle duplicate subexpressions?
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We should also utilize heuristics

• Perform selection operations as early as possible

• Perform projections early

• Avoid Cartesian products, etc.

Demerit:
Heuristics do not always lead to an optimal query 
evaluation plan.
σθ(r1 ⋈ r2) : Suppose, we have an index on the join 
attributes but not on the ‘θ’ attributes. Then performing 
the selection after the join might be optimal. 
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Combining the best of both worlds – exhaustive and heuristic

Most commercial optimizers set an optimization cost 
budget (say, 5 sec in time) before performing 
optimization.

The goal is:
(Optimization cost budget + cost of executing the 
chosen query evaluation plan) should be far less than 
the cost of executing a random query evaluation plan.
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Combining the best of both worlds – exhaustive and heuristic 
(contd.)

Most commercial optimizers, first, use some cost-
efficient heuristics to generate some plans.

Using these initial plans, the optimizer makes a 
prediction about the execution cost of an optimal plan.

Utilizing the prediction, the optimizer sets its 
optimization cost budget.
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Combining the best of both worlds – exhaustive and heuristic 
(contd.)

Subsequently, the optimizer initiates an exhaustive 
search.

If the optimization cost budget is reached before the 
search ends, the optimizer terminates the search and 
chooses the best plan found up to that point.
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The Halloween problem (IBM, 1976)

“Pat (Patricia Selinger) and Morton (Morton Astrahan) discovered 
this problem on Halloween... 

I remember they came into my office and said, ‘Chamberlin, look 
at this. We have to make sure that when the optimizer is making 
a plan for processing an update, it doesn't use an index that is 
based on the field that is being updated. How are we going to do 
that?’

It happened to be on a Friday, and we said, ‘Listen, we are not 
going to be able to solve this problem this afternoon. Let's just give 
it a name. We’ll call it the Halloween Problem and we’ll work on it 
next week.’ And it turns out it has been called that ever since.”

~ Oral history interview with Donald D. Chamberlin, co-designer of 
SQL

https://conservancy.umn.edu/handle/11299/107215 71
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The Halloween problem (contd.)

Pat, Morton, and Don were trying to write a query 
optimizer function for UPDATE queries that give raise to 
the employees whose salaries are less than a certain 
amount.

(This happens to be the exact query they were tinkering with)

UPDATE employee

SET salary = salary * 1.1

WHERE salary < $25,000;
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The Halloween problem (contd.)

Now, without query optimization, the DBMS first executes 
the following query (given in the MySQL syntax) to retrieve 
the list of target tuples.

SELECT @target := empid FROM employee WHERE salary 
< $25,000;

Then update the target tuples.

UPDATE employee

SET salary = salary * 1.1

WHERE empid = @id;
73



The Halloween problem (contd.)

However, such sequential execution is extremely time 
consuming for large organizations with thousands of 
employees.

Hence, Pat and Morton were attempting for 
parallelization: there was a scanner that was finding the 
target tuples and there was an updater that was 
updating the already found tuples. Both were running in 
parallel. 
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The Halloween problem (contd.)

The problem was that the ‘employee’ table was indexed (e.g., 
column-oriented RLE bitmap indexed) as large tables should be.

Hence, as soon as a tuple was updated, it was reindexed in the 
index structure. The bug was encountered when the index of the 
updated tuple was placed ahead of the scanner.

Suppose, the scanner is scanning in the ascending order of 
salaries. It scanned an employee with a salary of $20,000 and 
marked it as a target. The updater updated the salary to be 
$22,000. At this point, suppose, the scanner is still scanning the 
employees with salary $21,000. Therefore, the scanner will see 
this employee again and mark it as a target. It may keep 
happening in a loop until the employee’s salary reaches $25,000 
or above.   
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The Halloween problem (contd.)

Pat and Morton observed exactly that. When the query 
completed, all the employees had salaries of $25,000 or 
above.

One of the solutions:
- If the updater increases the salary, then the scanner 
needs to scan in the descending order of salaries.
- On the other hand, if the updater decreases the salary, 
then the scanner needs to scan in the ascending order 
of salaries. 
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The Halloween problem (contd.)

If for some database conditions, we can not ensure that the 
updater will never get ahead of the scanner i.e. it is not 
guaranteed that the Halloween problem will not occur, 
query optimization must not be performed.

Because data integrity is more important than query 
optimization for such data.

In general, the Halloween problem corresponds to any large 
indexed table where update operations take place 
periodically, e.g., on Diwali, Amazon wants to apply a flat 
50% discount on all products with prices less than ₹1,999.

Section 13.6.3, Optimization of Updates, Korth 77



Materialized views

• How to keep a materialized view up-to-date a.k.a. 
‘how to maintain a materialized view’?
• Incremental ‘materialized view maintenance’: Compute 

differential in the result using only the differential in the 
input (the insert and delete operations).

• How to select which views should be materialized?
• Not in the syllabus but please remember the question 

since it is the first question to answer when designing a 
materialized view.
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Examples of commercial query optimizers

1979: The System R Optimizer was developed for IBM 
System R (1974), which was the first implementation of 
SQL. 

1989: Starburst. It was the successor of the System R 
Optimizer and used in the initial versions of IBM DB2.

1993-95: Volcano and Cascades were developed for 
Microsoft SQL server.
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Data Sidekick: AI based SQL query optimizer 

https://www.airops.com/blog/using-ai-to-optimize-your-sql-queries
https://www.youtube.com/watch?v=SW2Zj3Xktv4

80

AirOps is a startup 

founded in Miami in 

2022. It “allows users to 

create AI-enabled 

applications on top of 

Large Language 

Models (LLMs).” They 

have raised $7 million 

in the first seed round.

https://www.airops.com/blog/using-ai-to-optimize-your-sql-queries
https://www.youtube.com/watch?v=SW2Zj3Xktv4
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Thank you
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