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What we discussed in the last class

• How to measure the importance or ‘centrality’ of a 
vertex in a given network?
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Groups of vertices

In social networks, vertices (i.e. social actors) form 
groups with other vertices to meet their needs.
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Examples of groups of vertices

• Family
• Friends
• Neighbours
• Coworkers
• Collaborators
• Business partners
• Communities
• Political parties
• Social media channels belonging to the same domain
• Functional modules of smart sensors
• Fleet of autonomous vehicles
• etc.
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Types of groups in an undirected network

• k-clique

• k-clan

• k-core

• k-component
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k-clique vs k-clan

A k-clique is a maximal subset of vertices such that each vertex is 
at most k hops away from other vertices in the subset (we are only 
considering the shortest paths between two vertices).

A k-clan is a k-clique where the said hops go through only the 
vertices within the k-clique.

The figure shows a 3-clan of 6 vertices which is also a 3-clique of 
6 vertices.
The vertices within the dashed area is a 2-clique 
but not a 2-clan.

Q. Is an 1-clique always an 1-clan? 
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1-clique or simply ‘clique’

A maximal subset of vertices such that each vertex is 
connected to all other vertices in the subset.

Maximal = If we add any vertex (from the remaining 
network) to the clique, the clique will no longer be a 
clique.

Example:

A friend circle where everyone is direct friends with 
everyone else. No mutual friendships.
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Overlapping cliques

Cliques can overlap i.e. share common vertices.
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k-core

A k-core is a maximal subset of vertices such that each 
vertex is connected to at least k other vertices in the 
subset.

Maximal = If we add any vertex (from the remaining 
network) to the k-core, the k-core will no longer be a k-
core.

Example: The students of an elective course where 
every student may not know all other students but 
he/she knows at least a few other students.
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Two k-cores can not overlap

If a k-core of size n1 overlaps with another k-core of size 
n2, it will simply form a larger k-core of size (n1 + n2 – c) 
where c = the number of common vertices.
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A simple algorithm to find all k-cores in a network

Input arguments: Graph G = (V, E) and value of k
Do

Remove all vertices with degree < k;

// It may introduce new vertices with degree < k, // hence 
we need to reiterate
While (no vertices were removed in the current iteration);

Do
Randomly select a vertex;
Find all the vertices in its k-core; // k = User input
Remove these vertices from the network;

While (no vertices are remaining);
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Component and k-component

A component is a maximal subset of vertices such that 
each vertex is reachable from all other vertices.

A k-component is a maximal subset of vertices such that 
each vertex is reachable from each of the other vertices 
by at least k ‘vertex-independent’ paths.

Vertex-independent paths = Paths that share no 
common vertices except the starting and ending 
vertices.
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Examples of k-components
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1-component or component

2-components or bicomponents

3-component or tricomponent



Application of k-component

Q. How many vertices do we need to remove to 
disconnect two given vertices?

=

Q. What is the size of the ‘vertex cut set’ between the 
two given vertices?

≥

Q. What is the value of k in a k-component that includes 
these two vertices?
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Application of k-component (contd.)

Q. How robust is a given network?

=

Q. How high is the value of k if the network is a k-
component?

Examples:

Placing network routers. (defensive)

Breaching adversarial networks. (offensive)
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k-component  does not mandate internal paths
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Unlike k-clan, we do not require the 

paths to go through the k-component.

Hence, the highlighted vertices form a 

tricomponent.

Q. Is a k-component always a (k-1)-component where k ≥ 2?



The effect of group formation (or groupism)

• Structural balance 
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‘Structural balance’ in signed undirected networks

[1] Frank Harary, Michigan Math. Journal, 1953 18

A signed network

In 1953, Frank Harary proved that a structurally balanced or simply ‘balanced’ 

network can be divided into connected groups of vertices such that 

(i) all connections between members of the same group are positive and 

(ii) all connections between members of different groups are negative [1].



‘Structural balance’ in signed undirected networks
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A signed network

Loops with even number of negative signs are always balanced.



‘Structural balance’ in signed undirected networks
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A signed network

In network (d), any two vertices could become temporary allies to defeat the 

third vertex. 

Unbalanced structures are extremely unreliable. The sign of an edge could 

change any time. The network may lose some or all of the edges anytime.



Signed loops with four vertices
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Some stable configurations

Exemplary application:

Geopolitics is a rich domain where structural balance analysis is critical.

- Not only analysing the balance of the current international relations but 

- also to analyse how adding, removing, or changing the sign of an edge may 

affect the overall balance.

It informs our decisions related to foreign policies, defence, etc.



Groups and structural balance

As Harary has pointed out, forming groups heavily influence 
the overall balance of a structure. Hence, structural balance 
analysis indicates 

- how stable are the existing groups 

(Am I safe with my current group?)

and

- if unstable, which group configurations will be stable

(Who should be in my group?) 

- Moreover, structural balance analysis can be used to 
strategically create imbalance in an association structure.
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How does someone select his/her group?

• Assortative mixing (homophily)

• Disassortative mixing (heterophily)
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Homophily or assortative mixing

How does a person choose his/her group?

“Birds of a feather flock together”.

In the sociology literature, it has been long observed 
that most people associate with other people who are 
similar to them w.r.t. some parameters.

Exemplary parameters are academic programmes, 
gender, age, nationality, language, income. 
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Heterophily or disassortative mixing

How does a person choose his/her group?

“Opposites attract”.

In rare cases, people associate with other people who 
are dissimilar to them w.r.t. some parameters.

Exemplary parameters are academic programmes, 
gender, age, nationality, language, income. 
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Heterophily or disassortative mixing (contd.)

However, assortative or disassortative mixing can 
depend upon the type of association we are studying.

For some types of association, disassortative mixing is 
not rare, rather the norm.

Examples:

Research collaborations (skillset), 
business partnerships (skillset, personalities), 
marriages (gender, physical attributes, personalities).
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Complex combinations of 
assortative and disassortative mixing

Marriages

- assortative w.r.t. nationality, religion, profession, etc.

- disassortative w.r.t. gender, physical attributes, 
personalities, etc.

International relations

- assortative w.r.t. political beliefs, religious beliefs, etc.

- disassortative w.r.t. natural resources, cultures, etc. 
(Is India better off grouping up with countries that 
produce petroleum?)
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Complex combinations of 
assortative and disassortative mixing (contd.)

Exemplary applications:

- Matchmaking algorithms

- International relations thinktanks

- Designing election campaigns (such as candidate 
nominations)
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Strong and weak ties

We developed a strong foundation visualizing a social 
network as a static structure.

However, in most cases, the associations between 
social actors are constantly evolving with time. Hence, 
we will start thinking about a social network as an 
evolving structure where

- vertices are getting added and removed

- edges are getting added and removed
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Strong and weak ties (contd.)

Mark Granovetter was doing PhD in Sociology at the 
Harvard University in late 1960s.

He was interviewing people who have recently changed 
jobs to figure out how they got their new jobs.

It turned out that many of the interviewees found the 
new jobs by leveraging their social networks. However, 
they found their jobs not through close friends (strong 
ties) but through acquaintances (weak ties).

Mark Granovetter. American Journal of Sociology, 1973 30



Triadic closure

Granovetter’s observation in 1960s was in line with 
Anatole Rapoport’s observation in 1950’s. Rapoport 
observed:

If two people in a social network have a friend in 
common, then there is an increased likelihood that they 
will become friends themselves at some point in the 
future [1].

When they become friends, the triad is closed; in other 
words, the triad closure happens.

[1] Anatole Rapoport, Bulletin of Mathematical Biophysics, 1953. 31



Triadic closure (contd.)

32

If we observe a social network for a long period of time, many of the new edges (such as 

edges B-C and G-F) are added due to the triad closure principle.

At the same time, some new edges (e.g., D-G) are added due to other reasons as well.



Strong triadic closure

Granovetter proposed the strong triadic closure property.

Any vertex A violates the strong triadic closure property if it has 
strong ties to two other vertices 
B and C, and there is no edge 
at all (either a strong or weak tie) 
between B and C.

We say that a vertex A satisfies 
the strong triadic closure property 
if it does not violate it.
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Why does triadic closure work?

• Opportunity

• Trust

• Incentive

Figure courtesy: https://www.plantex.in/products/plantex-heavy-duty-stainless-steel-door-butt-2000000095738 34

Three hinges to hold on to just a single door. 

Is it unnecessary?

https://www.plantex.in/products/plantex-heavy-duty-stainless-steel-door-butt-2000000095738


Incentive (in mathematical terms)

Incentive increases the clustering coefficient of a 
vertex.

Clustering coefficient of a vertex (in an undi graph)

= (How many ties are there between its friends / 
How many ties are possible among its friends) 
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Clustering coefficient
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Vertex A’s clustering coefficient

= (1 / 4C2) = 1/6

Vertex A’s updated clustering coefficient

= (3 / 4C2) = 3/6 = 1/2



High clustering coefficient reduces internal stress

In social psychology, it has been hypothesized that social 
actors with higher clustering efficients (i.e. whose friends are 
also friends among each other) encounter less internal stress.

Example:

In 2004, a study on American adolescents found that teenage 
girls who have a high clustering coefficient in their friendship 
networks are significantly less likely to contemplate suicide than 
those whose clustering coefficient is low.
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Thank you
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